設(shè)定點M(-3,4),動點N在圓x2+y2=4上運動,以O(shè)M,ON為兩邊作平行四邊形MONP(O為坐標原點),求點P的軌跡.
【答案】分析:先假設(shè)點P,N的坐標,利用向量的加法,找出兩點坐標之間的關(guān)系,再利用動點N在圓x2+y2=4上,即可求得點P的軌跡方程,從而可得點P的軌跡
解答:解:設(shè)P(x,y),N(x,y
=(-3,4),=(x,y),=(x,y)

∴(x,y)=(x-3,y+4)
∴x=x-3,y=y+4
∴x=x+3,y=y-4
∵點N(x,y)在圓x2+y2=4上,
∴(x+3)2+(y-4)2=4
由O,M,N三點共線時,N()或N(
∴x≠-且x≠-
∴P的軌跡是以(-3,4)為圓心,2為半徑的圓(去掉兩個點).
點評:本題重點考查代入法求軌跡方程,解題的關(guān)鍵是尋找動點坐標之間的關(guān)系,區(qū)分軌跡與軌跡方程.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)定點M(-3,4),動點N在圓x2+y2=4上運動,以O(shè)M、ON為鄰邊作平行四邊形MONP,則點P的軌跡方程為
(x+3)2+(y-4)2=4(點(-
9
5
,
12
5
)和(-
21
5
28
5
)除外)
(x+3)2+(y-4)2=4(點(-
9
5
,
12
5
)和(-
21
5
,
28
5
)除外)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)定點M(-3,4),動點N在圓x2+y2=4上運動,以O(shè)M,ON為兩邊作平行四邊形MONP(O為坐標原點),求點P的軌跡.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè)定點M(-3,4),動點N在圓x2+y2=4上運動,以O(shè)M,ON為兩邊作平行四邊形MONP(O為坐標原點),求點P的軌跡.

查看答案和解析>>

科目:高中數(shù)學 來源:2009-2010學年黑龍江省鶴崗一中高二(上)期中數(shù)學試卷(文科)(解析版) 題型:解答題

設(shè)定點M(-3,4),動點N在圓x2+y2=4上運動,以O(shè)M,ON為兩邊作平行四邊形MONP(O為坐標原點),求點P的軌跡.

查看答案和解析>>

同步練習冊答案