已知函數(shù)

1)當(dāng)時(shí),求的最小值;

2)在區(qū)間(1,2)內(nèi)任取兩個(gè)實(shí)數(shù)p,q,且p≠q,若不等式>1恒成立,求實(shí)數(shù)a的取值范圍;

3)求證:(其中)。

 

1;23詳見解析

【解析】

試題分析:1求導(dǎo),令導(dǎo)數(shù)大于0得增區(qū)間,令導(dǎo)數(shù)小于0得減區(qū)間,根據(jù)函數(shù)的單調(diào)性求其最小值。2因?yàn)?/span>,表示點(diǎn)與點(diǎn)連成的斜率,可將問題轉(zhuǎn)化為直線的斜率問題。根據(jù)導(dǎo)數(shù)的幾何意義可求其斜率,將恒成立問題轉(zhuǎn)化為求函數(shù)最值問題,求最值時(shí)還是用求導(dǎo)再求其單調(diào)性的方法求其最值。3由(2)可得,則有。用放縮法可證此不等式。

試題解析:【解析】
1

上遞減,上遞增。

。 4

2,

表示點(diǎn)與點(diǎn)連成的斜率,又,,即函數(shù)圖象在區(qū)間(23)任意兩點(diǎn)連線的斜率大于1,

內(nèi)恒成立. 6

所以,當(dāng)恒成立.

設(shè)

當(dāng)上單調(diào)遞減;

當(dāng)上單調(diào)遞增. 9

10

3)由(2)得,

11

所以

成立. 14

考點(diǎn):用導(dǎo)數(shù)研究函數(shù)的性質(zhì)。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2015屆湖北部分重點(diǎn)中學(xué)高二上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題

在平面直角坐標(biāo)系中,若方程表示的曲線為橢圓,則的取值范圍是(

A B C D

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆湖北荊門市高二上學(xué)期期末質(zhì)量檢測理數(shù)學(xué)試卷(解析版) 題型:選擇題

已知雙曲線的一條漸近線方程是,它的一個(gè)焦點(diǎn)在拋物線的準(zhǔn)線上,則雙曲線的方程為

A. B.

C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆湖北荊門市高二上學(xué)期期末質(zhì)量檢測文數(shù)學(xué)試卷(解析版) 題型:填空題

某中學(xué)高一年級有學(xué)生600人,高二年級有學(xué)生450人,高三年級有學(xué)生750人,每個(gè)學(xué)生被抽到的可能性均為0.2,若該校取一個(gè)容量為n的樣本,則n= .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆湖北荊門市高二上學(xué)期期末質(zhì)量檢測文數(shù)學(xué)試卷(解析版) 題型:選擇題

如圖是用模擬方法估計(jì)圓周率π值的程序框圖,P表示估計(jì)結(jié)果,則圖中空白框內(nèi)應(yīng)填入

AP BP CP DP

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆湖北孝感高級中學(xué)高二上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

設(shè)命題p(4x3)2≤1;命題qx2(2a1)xa(a1)≤0,若的必要不充分條件,求實(shí)數(shù)a的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆湖北孝感高級中學(xué)高二上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題

已知的導(dǎo)函數(shù),則的圖像是( )

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆湖北孝感高級中學(xué)高二上學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:填空題

某射擊運(yùn)動(dòng)員在一次射擊測試中射擊6次,每次命中的環(huán)數(shù)為:7,8,7,9,5,6.則其射擊成績的方差為_____________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆浙江溫州十校聯(lián)合體高二上學(xué)期期末聯(lián)考理數(shù)學(xué)卷(解析版) 題型:解答題

已知命題方程表示焦點(diǎn)在軸上的雙曲線。命題曲線軸交于不同的兩點(diǎn),若為假命題,命題,求實(shí)數(shù)的取值范圍。

 

查看答案和解析>>

同步練習(xí)冊答案