機床廠今年年初用98萬元購進一臺數(shù)控機床,并立即投入生產(chǎn)使用,計劃第一年維修、保養(yǎng)費用12萬元,從第二年開始,每年所需維修、保養(yǎng)費用比上一年增加4萬元,該機床使用后,每年的總收入為50萬元,設(shè)使用x年后數(shù)控機床的盈利額為y萬元.
(Ⅰ)寫出y與x之間的函數(shù)關(guān)系式;
(Ⅱ)從第幾年開始,該機床開始盈利(盈利額為正值);
(Ⅲ)使用若干年后,對機床的處理方案有兩種:
(1)當年平均盈利額達到最大值時,以30萬元價格處理該機床;
(2)當盈利額達到最大值時,以12萬元價格處理該機床.
請你研究一下哪種方案處理較為合理?請說明理由.

(Ⅰ) ;(Ⅱ)從第3年開始盈利;(Ⅲ)方案Ⅰ比較合理.

解析試題分析:(Ⅰ)使用x年的總收入為,每年支付的維修保養(yǎng)費用構(gòu)成一等差數(shù)列,由等差數(shù)列求和公式可得使用x年的總支出,總收入減去總支出便可得使用x年后數(shù)控機床的盈利額,從而得y與x之間的函數(shù)關(guān)系式.
(Ⅱ)解不等式便可得的范圍,從而知道從從第幾年開始盈利.
(Ⅲ))(1)年平均盈利額為:
可用重要不等式求出其最大值,從而可確定什么時候年平均盈利額達到最大值,可求出工廠獲得的總利潤.
(2)盈利額y=-2x2+40x-98是一個二次函數(shù),可通過配方求出其最大值,從而可確定什么時候盈利額達到最大值,可求出工廠獲得的總利潤.
將二者進行比較,便知哪個方案更合理.
試題解析:(Ⅰ)依題得(xN*).    3分
(Ⅱ)解不等式.
.又∵xN*,∴3≤x≤17,故從第3年開始盈利.     7分
(Ⅲ)(1)年平均盈利額為:
,當且僅當時,即x=7時等號成立.
所以到2008年,年平均盈利額達到最大值,工廠共獲利12×7+30=114萬元.
(2)盈利額y=-2x2+40x-98=-(x-10)2+102,當x=10時,ymax=102.
故到2011年,盈利額達到最大值,工廠獲利102+12=114萬元 .        
盈利額達到的最大值相同,而方案Ⅰ所用的時間較短,故方案Ⅰ比較合理.        12分
考點:1、函數(shù)的應(yīng)用;2、函數(shù)的最值;3、重要不等式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

命題p:關(guān)于x的不等式,對一切恒成立;命題q:函是增函數(shù).若p或q為真,p且q為假,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

求值化簡:
(Ⅰ);
(Ⅱ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù) 
(1)若的定義域是,求實數(shù)的取值范圍及的值域;
(2)若的值域是,求實數(shù)的取值范圍及的定義域

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),
(1)當時,解不等式
(2)若函數(shù)有最大值,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)
(1)求f(x)的單調(diào)區(qū)間;
(2)求f(x)的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,某生態(tài)園欲把一塊四邊形地辟為水果園,其中,.若經(jīng)過上一點上一點鋪設(shè)一條道路,且將四邊形分成面積相等的兩部分,設(shè)

(1)求的關(guān)系式;
(2)如果是灌溉水管的位置,為了省錢,希望它最短,求的長的最小值;
(3)如果是參觀路線,希望它最長,那么的位置在哪里?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)若是函數(shù)的極值點,求的值;
(2)求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)a為實數(shù),記函數(shù)的最大值為
(1)設(shè)t=,求t的取值范圍,并把f(x)表示為t的函數(shù)m(t) ;
(2)求 ;
(3)試求滿足的所有實數(shù)a.

查看答案和解析>>

同步練習(xí)冊答案