(理)設An為(1+x)n+1的展開式中含xn-1項的系數(shù),Bn為(1+x)n-1的展開式中二項式系數(shù)的和,n∈N*,則能使An≥Bn成立的n的最大值是_________.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設不等式組
x>0
y>0
y≤-nx+3n
所表示的平面區(qū)域為Dn,記Dn內的整點個數(shù)為an(n∈N*)(整點即橫坐標與縱坐標均為整數(shù)的點).
(1)求數(shù)列{an}的通項公式;
(2)(理)設Sn=
1
an+1
+
1
an+2
+…+
1
a2n
,求Sn的最小值(n>1,n∈N*);
(3)設Tk=
1
a1
+
1
a2
+…+
1
ak
求證:T2n
7n+11
36
(n>1,n∈N*)

(文)記數(shù)列{an}的前n項和為Sn,且Tn=
Sn
3•2n-1
.若對一切的正整數(shù)n,總有Tn≤m,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知公比為q(0<q<1)的無窮等比數(shù)列{an}各項的和為9,無窮等比數(shù)列{an2}各項的和為
81
5

(1)求數(shù)列{an}的首項a1和公比q;
(2)對給定的k(k=1,2,3,…,n),設T(k)是首項為ak,公差為2ak-1的等差數(shù)列,求T(2)的前2007項之和;
(3)(理)設bi為數(shù)列T(i)的第i項,Sn=b1+b2+…+bn
①求Sn的表達式,并求出Sn取最大值時n的值.
②求正整數(shù)m(m>1),使得
lim
n→∞
Sn
nm
存在且不等于零.
(文)設bi為數(shù)列T(i)的第i項,Sn=b1+b2+…+bn:求Sn的表達式,并求正整數(shù)m(m>1),使得
lim
n→∞
Sn
nm
存在且不等于零.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2005•靜安區(qū)一模)已知等差數(shù)列{an}的首項為p,公差為d(d>0).對于不同的自然數(shù)n,直線x=an與x軸和指數(shù)函數(shù)f(x)=(
12
)x
的圖象分別交于點An與Bn(如圖所示),記Bn的坐標為(an,bn),直角梯形A1A2B2B1、A2A3B3B2的面積分別為s1和s2,一般地記直角梯形AnAn+1Bn+1Bn的面積為sn
(1)求證數(shù)列{sn}是公比絕對值小于1的等比數(shù)列;
(2)設{an}的公差d=1,是否存在這樣的正整數(shù)n,構成以bn,bn+1,bn+2為邊長的三角形?并請說明理由;
(3)(理)設{an}的公差d(d>0)為已知常數(shù),是否存在這樣的實數(shù)p使得(1)中無窮等比數(shù)列{sn}各項的和S>2010?并請說明理由.
(4)(文)設{an}的公差d=1,是否存在這樣的實數(shù)p使得(1)中無窮等比數(shù)列{sn}各項的和S>2010?如果存在,給出一個符合條件的p值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知等差數(shù)列{an}的首項為p,公差為d(d>0).對于不同的自然數(shù)n,直線x=an與x軸和指數(shù)函數(shù)數(shù)學公式的圖象分別交于點An與Bn(如圖所示),記Bn的坐標為(an,bn),直角梯形A1A2B2B1、A2A3B3B2的面積分別為s1和s2,一般地記直角梯形AnAn+1Bn+1Bn的面積為sn
(1)求證數(shù)列{sn}是公比絕對值小于1的等比數(shù)列;
(2)設{an}的公差d=1,是否存在這樣的正整數(shù)n,構成以bn,bn+1,bn+2為邊長的三角形?并請說明理由;
(3)(理)設{an}的公差d(d>0)為已知常數(shù),是否存在這樣的實數(shù)p使得(1)中無窮等比數(shù)列{sn}各項的和S>2010?并請說明理由.
(4)(文)設{an}的公差d=1,是否存在這樣的實數(shù)p使得(1)中無窮等比數(shù)列{sn}各項的和S>2010?如果存在,給出一個符合條件的p值;如果不存在,請說明理由.

查看答案和解析>>

同步練習冊答案