(理)如圖,單位正方體ABCD-A1B1C1D1,E,F(xiàn)分別是棱C1D1和B1C1的中點(diǎn),試求:
(Ⅰ)AF與平面BEB1所成角的余弦值;
(Ⅱ)點(diǎn)A到面BEB1的距離.
(1)如圖所示,建立空間直角坐標(biāo)系.
則A(1,0,0),B(1,1,0),B1(1,1,1),E(0,
1
2
,1)
,F(
1
2
,1,1)

BB1
=(0,0,1)
,
BE
=(-1,-
1
2
,1)
,
AF
=(-
1
2
,1,1)

設(shè)平面BEB1的法向量為
n
=(x,y,z)
,
n
BB1
=0
n
BE
=0
,即
z=0
-x-
1
2
y+z=0
,取y=2,則x=-1,z=0.
n
=(-1,2,0)
,
設(shè)AF與平面BEB1所成的角為θ,θ∈[0,
π
2
]

sinθ=|cos<
n
AF
>|
=
|
n
AF
|
|
n
||
AF
|
=
1
2
+2
5
×
1
4
+2
=
5
3
,
cosθ=
1-sin2θ
=
2
3

(2)由(1)可得平面BEB1的法向量
n
=(-1,2,0)
AB
=(0,1,0)

∴點(diǎn)A到面BEB1的距離d=
|
n
AB
|
|
n
|
=
2
5
=
2
5
5
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在正方體ABCD-A1B1C1D1中,面對(duì)角線A1C1與體對(duì)角線B1D所成角等于______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,正方體ABCD-A1B1C1D1中,P為面ADD1A1的中心,Q為DCC1D1的中心,則向量
PB
,
QA1
夾角的余弦值為( 。
A.
6
6
B.-
6
6
C.
1
6
D.-
1
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

空間四邊形ABCD中,M,N分別是AB和CD的中點(diǎn),AD=BC=6,MN=3
2
,則AD和BC所成的角是( 。
A.120°B.90°C.60°D.30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知某幾何體的直觀圖和三視圖如圖所示,其正視圖為矩形,側(cè)視圖為等腰直角三角形,俯視圖為直角梯形.

(1)求證:BN⊥平面C1B1N;
(2)設(shè)θ為直線C1N與平面CNB1所成的角,求sinθ的值;
(3)設(shè)M為AB中點(diǎn),在BC邊上求一點(diǎn)P,使MP平面CNB1,求
BP
PC
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在P是直角梯形ABCD所在平面外一點(diǎn),PA⊥平面ABCD,∠BAD=90°,ADBC,AB=BC=a,AD=2a,PD與底面成30°角,BE⊥PD于E,求直線BE與平面PAD所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知正三角形PAD,正方形ABCD,平面PAD⊥平面ABCD,E為PD的中點(diǎn).
(1)求證:CD⊥AE;
(2)求證:AE⊥平面PCD;
(3)求直線AC與平面PCD所成的角的大小的正弦..

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知正四棱柱ABCD-A1B1C1D1中,底面邊長(zhǎng)AB=2,側(cè)棱BB1的長(zhǎng)為4,過(guò)點(diǎn)B作B1C的垂線交側(cè)棱CC1于點(diǎn)E,交B1C于點(diǎn)F.
(Ⅰ)求證:A1C⊥平面BED;
(Ⅱ)求A1B與平面BDE所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在直三棱柱ABC-A1B1C1中,AB=BC=CA=a,AA1=
2
a
,求AB1與側(cè)面AC1所成的角.

查看答案和解析>>

同步練習(xí)冊(cè)答案