精英家教網 > 高中數學 > 題目詳情
18.過原點的直線與雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)交于M,N兩點,P是雙曲線上異于M,N的一點,若直線MP與直線NP的斜率都存在且乘積為$\frac{5}{4}$,則雙曲線的離心率為$\frac{3}{2}$.

分析 設出P,M,N的坐標,根據直線斜率之間的關系建立方程關系進行求解即可.

解答 解:由雙曲線的對稱性知,可設P(x0,y0),M(x1,y1),則N(-x1,-y1).
由${k_{PM}}{k_{PN}}=\frac{5}{4}$,可得:$\frac{{{y_0}-{y_1}}}{{{x_0}-{x_1}}}•\frac{{{y_0}+{y_1}}}{{{x_0}+{x_1}}}=\frac{5}{4}$,
即$y_0^2-y_1^2=\frac{5}{4}(x_0^2-x_1^2)$,即$\frac{5}{4}x_0^2-y_0^2=\frac{5}{4}x_1^2-y_1^2$,
又因為P(x0,y0),M(x1,y1)均在雙曲線上,
所以$\frac{x_0^2}{a^2}-\frac{y_0^2}{b^2}=1$,$\frac{x_1^2}{a^2}-\frac{y_1^2}{b^2}=1$,所以$\frac{b^2}{a^2}=\frac{5}{4}$,
所以雙曲線的離心率為$e=\frac{c}{a}=\sqrt{1+\frac{b^2}{a^2}}=\frac{3}{2}$.
故答案為:$\frac{3}{2}$.

點評 本題主要考查雙曲線離心率的計算,根據直線斜率關系建立方程是解決本題的關鍵.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

8.過x軸上一定點M作直線l與拋物線y2=4x交于P,Q兩點,若$\overrightarrow{OP}•\overrightarrow{OQ}=5$,則M點的坐標為(5,0)或(-1,0).

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

9.已知拋物線y2=2px(p>0)的焦點為F,若過點F且斜率為1的直線l與拋物線交于P(x1,2$\sqrt{2}$),Q(x2,y2)兩點,則拋物線的準線方程為x=$\sqrt{2}$-2.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

6.若arcsinx-arccosx=$\frac{π}{6}$,則x=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

13.已知α,β∈(0,π),并且sin(5π-α)=$\sqrt{2}$cos(${\frac{7}{2}$π+β),$\sqrt{3}$cos(-α)=-$\sqrt{2}$cos(π+β),求α,β的值.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

3.若點P是拋物線C:y2=4x上任意一點,F是拋物線C的焦點,則|PF|的最小值為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

10.拋物線y2=mx的焦點為F,點P(2,2)在此拋物線上,M為線段PF的中點,則點M到該拋物線準線的距離為( 。
A.3B.$\frac{7}{2}$C.2D.$\frac{7}{4}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

7.焦點為F的拋物線C:y2=2px(p>0)上有一動點P,且點P到拋物線C的準線與點D(0,2)的距離之和的最小值為$\sqrt{5}$
(1)求拋物線C的方程;
(2)過點Q(1,1)作直線交拋物線C于不同于R(1,2)的兩點A,B,若直線AR,BR分別交直線l:y=2x+2于M,N兩點,求|MN|取最小值時直線AB的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

8.“?x∈R,x2+ax+1≥0成立”是“|a|≤1”的( 。
A.充分必要條件B.必要而不充分條件
C.充分而不必要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習冊答案