若復(fù)數(shù)z=
2i
1-i
,則|
.
z
|等于( 。
A、
1
2
B、
2
2
C、1
D、
2
考點(diǎn):復(fù)數(shù)求模
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:直接利用復(fù)數(shù)分母實(shí)數(shù)化,求出復(fù)數(shù)的共軛復(fù)數(shù),然后利用模的求法法則,求解即可.
解答: 解:復(fù)數(shù)z=
2i
1-i
=
2i(1+i)
(1-i)(1+i)
=-1+i,
則|
.
z
|=|-1-i|=
(-1)2+(-1)2
=
2

故選:D.
點(diǎn)評:本題考查復(fù)數(shù)的代數(shù)形式的混合運(yùn)算,復(fù)數(shù)的模的求法,考查計(jì)算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①若a>0,b>0,c>0,a+b+c=1,則a2+b2+c2
1
3
;
②已知x>0,y>0,
1
x
+
4
y
=1,若不等式m2-8m-x-y<0恒成立,則實(shí)數(shù)m的取值范圍為(-1,9);
③不等式1<|3x+4|≤4的解集為(-1,0];
④關(guān)于x的不等式|x-1|+|x+2|<m的解集不是空集,則m>3.
其中正確的命題個(gè)數(shù)為( 。
A、4個(gè)B、3個(gè)C、2個(gè)D、1個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是等差數(shù)列,其前n項(xiàng)和為Sn,a4=
3
2
,S4=12.則數(shù)列{an}的通項(xiàng)公式an=
 
;n=
 
時(shí),Sn最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

空間直角坐標(biāo)系Oxyz中,一個(gè)四面體ABCD的頂點(diǎn)坐標(biāo)分別是A(0,0,2),B(2,2,0),C(1,2,1),D(2,2,2),則它的俯視圖面積為(  )
A、1B、1.5C、2D、2.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)化簡f(x)=
sin(π-x)cos(2π-x)tan(-x+3π)
-tan(-x-π)sin(-
2
-x)

(2)若sin(x+
2
)=
1
5
,求f(x)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的前n和為Sn,若已知a3+3a5-a6的值,則下列可求的是( 。
A、S5
B、S6
C、S7
D、S8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

閱讀如圖程序框圖,如果輸出的函數(shù)值在區(qū)間(
1
9
,
1
3
)
內(nèi),那么輸入實(shí)數(shù)x的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,動點(diǎn)P(x,y)到兩條坐標(biāo)軸的距離之和等于它到點(diǎn)(1,1)的距離,記點(diǎn)P的軌跡為曲線W,給出下列四個(gè)結(jié)論:
①曲線W關(guān)于原點(diǎn)對稱;
②曲線W關(guān)于直線y=x對稱;
③曲線W與x軸非負(fù)半軸,y軸非負(fù)半軸圍成的封閉圖形的面積小于
1
2
;
④曲線W上的點(diǎn)到原點(diǎn)距離的最小值為2-
2

其中,所有正確結(jié)論的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l垂直平面a,垂足為O,在矩形ABCD中AD=1,AB=2,若點(diǎn)A在l上移動,點(diǎn)B在平面a上移動,則O、D兩點(diǎn)間的最大距離為
 

查看答案和解析>>

同步練習(xí)冊答案