分析 設(shè)F(x)=f(x)-$\frac{1}{3}$x,根據(jù)題意可得函數(shù)F(x)在R上單調(diào)遞減,然后根據(jù)f(x2)<$\frac{{x}^{2}}{3}$+$\frac{2}{3}$,可得f(x2)-$\frac{{x}^{2}}{3}$<f(4)-$\frac{4}{3}$,最后根據(jù)單調(diào)性可求出x的取值范圍
解答 解:設(shè)F(x)=f(x)-$\frac{1}{3}$x,則F′(x)=f′(x)-$\frac{1}{3}$,
∵f′(x)<$\frac{1}{3}$,∴F′(x)=f′(x)-$\frac{1}{3}$<0,
即函數(shù)F(x)在R上單調(diào)遞減,
而f(x2)<$\frac{{x}^{2}}{3}$+$\frac{2}{3}$,
即f(x2)-$\frac{{x}^{2}}{3}$<f(4)-$\frac{4}{3}$,
∴F(x2)<F(4)而函數(shù)F(x)在R上單調(diào)遞減,
∴x2>4即x∈(-∞,-2)∪(2,+∞),
故答案為:(-∞,-2)∪(2,+∞)
點(diǎn)評(píng) 本題主要考查了導(dǎo)數(shù)的運(yùn)算,以及利用單調(diào)性解不等式和構(gòu)造法的應(yīng)用,同時(shí)考查了運(yùn)算求解的能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $({\frac{1}{2},+∞})$ | B. | $({-∞,\frac{1}{2}})$ | C. | (-2,3) | D. | (-∞,-2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-7,-3) | B. | [-21,-3] | C. | [-7,-3] | D. | (-21,-3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,0) | B. | (0,$\frac{1}{e+1}$) | C. | ($\frac{e}{{e}^{2}+1}$,1) | D. | (1,+∞) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com