8.l,m為兩條直線,α為平面,且l⊥α,下列四個(gè)命題中真命題的個(gè)數(shù)是( 。
①若m⊥α,則m∥l;②若m⊥l,則m∥α;③若m∥α,則m⊥l;④若m∥l,則m⊥α.
A.1B.2C.3D.4

分析 由線面垂直的性質(zhì)判斷①;由l⊥α,m⊥l,可得m∥α或m?α判斷②;由線面平行及垂直的關(guān)系判斷③;由異面直線所成角的定義及線面垂直的判定判斷④.

解答 解:①已知l⊥α,若m⊥α,由線面垂直的性質(zhì)可得m∥l,故①正確;
②已知l⊥α,若m⊥l,則m∥α或m?α,故②錯誤;
③若m∥α,過m的平面β交α于n,則m∥n,已知l⊥α,則l⊥n,得m⊥l,故③正確;
④已知l⊥α,則l垂直平面α內(nèi)的兩條相交直線,若m∥l,則m也垂直于α內(nèi)的這兩條相交直線,則m⊥α,故④正確.
∴正確的命題個(gè)數(shù)是3個(gè).
故選:C.

點(diǎn)評 本題考查命題的真假判斷與應(yīng)用,考查空間中的點(diǎn)線面的位置關(guān)系,考查了直線和平面平行、直線和平面垂直的判定和性質(zhì),是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)函數(shù)f(x)=ln(x+$\sqrt{{x}^{2}+1}$),則對任意實(shí)數(shù)a,b,a+b≥0是f(a)+f(b)≥0的( 。
A.充分必要條件B.充分而非必要條件
C.必要而非充分條件D.既非充分也非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知向量$\overrightarrow{m}$=(sinA,sinB),$\overrightarrow{n}$=(cosB,cosA),$\overrightarrow{m}$•$\overrightarrow{n}$=sin2C,
且A、B、C分別為△ABC的三邊a、b、c所對的角.
(1)求角C的大小;
(2)若a+b=2,設(shè)D為AB邊上中點(diǎn),求|$\overrightarrow{CD}$|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)命題p:函數(shù)f(x)=tanx是其定義域上的增函數(shù);命題q:函數(shù)g(x)=3x-3-x為奇函數(shù).則下列命題中真命題是( 。
A.p∧qB.p∧(¬q)C.(¬p)∧(¬q)D.(¬p)∧q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知拋物線y2=2px(p>0)的焦點(diǎn)為F與橢圓C的一個(gè)焦點(diǎn)重合,且拋物線的準(zhǔn)線與橢圓C相交于點(diǎn)$({-1,\frac{{\sqrt{2}}}{2}})$.
(1)求拋物線的方程;
(2)過點(diǎn)F是否存在直線l與橢圓C交于M,N兩點(diǎn),且以MN為對角線的正方形的第三個(gè)頂點(diǎn)恰在y軸上?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=ax3+3x2-6ax-11,g(x)=3x2+6x+12,和直線l:y=kx+9.又f′(-1)=0.
(1)求a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)是否存在k的值,使得直線l既是曲線y=f(x)的切線,又是y=g(x)的切線;如果存在,求出k的值,如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.如果一個(gè)正四面體的體積為9dm3,則其表面積S的值為18$\sqrt{3}$dm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.如果函數(shù)f(x)=-x2+2ax-3在(-∞,4)上是單是遞增,則實(shí)數(shù)a的取值范圍是(  )
A.a≥-4B.a≥4C.a<4D.a<-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.函數(shù)f(x)=ax3-ax為R上增函數(shù)的一個(gè)充分不必要條件是( 。
A.a≤0B.a<0C.a≥0D.a>0

查看答案和解析>>

同步練習(xí)冊答案