已知兩個(gè)不相等的實(shí)數(shù)a、b滿足以下關(guān)系式:a2•sinθ+a•cosθ+c=0,b2•sinθ+b•cosθ+c=0,則連接A(a2,a)、B(b2,b)兩點(diǎn)的直線被圓心在原點(diǎn)的單位圓所截得的弦長(zhǎng)為,則c=   
【答案】分析:根據(jù)實(shí)數(shù)a與b滿足的兩個(gè)關(guān)系式得到a與b是一個(gè)一元二次方程的兩個(gè)解,利用根與系數(shù)的關(guān)系求出a+b和ab的值,利用A與B的坐標(biāo)寫(xiě)出直線AB的方程,然后由弦長(zhǎng)及單位圓的半徑,利用垂徑定理及勾股定理求出圓心到直線AB的距離,再利用點(diǎn)到直線的距離公式求出原點(diǎn)到直線AB的距離d,然d等于求出的距離列出關(guān)于c的方程,求出方程的解即可得到c的值.
解答:解:由題知,實(shí)數(shù)a與b為一元二次方程的兩個(gè)解,
所以a+b=-,ab=-,
又A(a2,a)、B(b2,b),
所以直線AB的方程為:y-a=(x-a2),化簡(jiǎn)得x-(a+b)y+ab=0,
∵弦長(zhǎng)為,圓的半徑r=1,∴圓心到直線AB的距離d==
==,
解得:c=±
故答案為:
點(diǎn)評(píng):此題考查了直線與圓的位置關(guān)系,涉及的知識(shí)有:韋達(dá)定理,勾股定理,直線的兩點(diǎn)式方程,以及點(diǎn)到直線的距離公式,當(dāng)直線與圓相交時(shí),常常利用弦長(zhǎng)的一半,圓的半徑及弦心距構(gòu)造直角三角形,利用勾股定理來(lái)解決問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知兩個(gè)不相等的實(shí)數(shù)a、b滿足以下關(guān)系式:a2•sinθ+a•cosθ-
π
4
=0
,b2•sinθ+b•cosθ-
π
4
=0
,
則連接A(a2,a)、B(b2,b)兩點(diǎn)的直線與圓心在原點(diǎn)的單位圓的位置關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知兩個(gè)不相等的實(shí)數(shù)a、b滿足以下關(guān)系式:a2•sinθ+a•cosθ-
π
4
=0
,b2•sinθ+b•cosθ-
π
4
=0
,則連接A(a2,a)、B(b2,b)兩點(diǎn)的直線與圓心在原點(diǎn)的單位圓的位置關(guān)系是( 。
A、相離B、相交
C、相切D、不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知兩個(gè)不相等的實(shí)數(shù)a、b滿足以下關(guān)系式:a2•sinθ+a•cosθ+c=0,b2•sinθ+b•cosθ+c=0,則連接A(a2,a)、B(b2,b)兩點(diǎn)的直線被圓心在原點(diǎn)的單位圓所截得的弦長(zhǎng)為
3
,則c=
±
1
2
±
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江西省紅色六校高三第二次聯(lián)考文科數(shù)學(xué)試卷 題型:選擇題

已知兩個(gè)不相等的實(shí)數(shù)a、b滿足以下關(guān)系式:,,則連接A(a2,a)、B(b2,b)兩點(diǎn)的直線與圓x2+y2=1的位置關(guān)是(    )

A、相離      B、相切      C、相交    D、不能確定

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:青州市模擬 題型:填空題

已知兩個(gè)不相等的實(shí)數(shù)a、b滿足以下關(guān)系式:a2•sinθ+a•cosθ-
π
4
=0
,b2•sinθ+b•cosθ-
π
4
=0

則連接A(a2,a)、B(b2,b)兩點(diǎn)的直線與圓心在原點(diǎn)的單位圓的位置關(guān)系是______.

查看答案和解析>>

同步練習(xí)冊(cè)答案