【題目】已知函數(shù)的零點(diǎn)構(gòu)成一個(gè)公差為的等差數(shù)列,把函數(shù)的圖象沿軸向右平移個(gè)單位,得到函數(shù)的圖象.關(guān)于函數(shù),下列說(shuō)法正確的是( )
A. 在上是增函數(shù)B. 其圖象關(guān)于直線(xiàn)對(duì)稱(chēng)
C. 函數(shù)是偶函數(shù)D. 在區(qū)間上的值域?yàn)?/span>
【答案】D
【解析】
化簡(jiǎn)f(x)=2sin(ωx),由三角函數(shù)圖象的平移得:g(x)=2sin2x,
由三角函數(shù)圖象的性質(zhì)得y=g(x)的單調(diào)性,對(duì)稱(chēng)性,再由x時(shí),求得函數(shù)g(x)值域得解.
f(x)=sinωxcosωx=2sin(ωx),
由函數(shù)f(x)的零點(diǎn)構(gòu)成一個(gè)公差為的等差數(shù)列,
則周期T=π,即ω=2,
即f(x)=2sin(2x),
把函數(shù)f(x)的圖象沿x軸向右平移個(gè)單位,得到函數(shù)g(x)的圖象,
則g(x)=2sin[2(x)]=2sin2x,
當(dāng)≤2x≤,即≤x≤, y=g(x)是減函數(shù),故y=g(x)在[,]為減函數(shù),
當(dāng)2x=即x(k∈Z),y=g(x)其圖象關(guān)于直線(xiàn)x(k∈Z)對(duì)稱(chēng),且為奇函數(shù),
故選項(xiàng)A,B,C錯(cuò)誤,
當(dāng)x時(shí),2x∈[,],函數(shù)g(x)的值域?yàn)閇,2],
故選項(xiàng)D正確,
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】鳳梨穗龍眼原產(chǎn)廈門(mén),是廈門(mén)市的名果,栽培歷史已有100多年.龍眼干的級(jí)別按直徑的大小分為四個(gè)等級(jí)(如下表).
級(jí)別 | 三級(jí)品 | 二級(jí)品 | 一級(jí)品 | 特級(jí)品 |
某商家為了解某農(nóng)場(chǎng)一批龍眼干的質(zhì)量情況,隨機(jī)抽取了100個(gè)龍眼干作為樣本(直徑分布在區(qū)間),統(tǒng)計(jì)得到這些龍眼干的直徑的頻數(shù)分布表如下:
頻數(shù) | 1 | 29 | 7 |
用分層抽樣的方法從樣本的一級(jí)品和特級(jí)品中抽取6個(gè),其中一級(jí)品有2個(gè).
(1)求、的值,并估計(jì)這批龍眼干中特級(jí)品的比例;
(2)已知樣本中的100個(gè)龍眼干約500克,該農(nóng)場(chǎng)有500千克龍眼干待出售,商家提出兩種收購(gòu)方案:
方案:以60元/千克收購(gòu);
方案:以級(jí)別分裝收購(gòu),每袋100個(gè),特級(jí)品40元/袋、一級(jí)品30元/袋、二級(jí)品20元/袋、三級(jí)品10元/袋.
用樣本的頻率分布估計(jì)總體分布,哪個(gè)方案農(nóng)場(chǎng)的收益更高?并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知離心率為的橢圓,經(jīng)過(guò)拋物線(xiàn)的焦點(diǎn),斜率為1的直線(xiàn)經(jīng)過(guò)且與橢圓交于兩點(diǎn).
(1)求面積;
(2)動(dòng)直線(xiàn)與橢圓有且僅有一個(gè)交點(diǎn),且與直線(xiàn),分別交于兩點(diǎn),且為橢圓的右焦點(diǎn),證明為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】等邊的邊長(zhǎng)為,點(diǎn),分別是,上的點(diǎn),且滿(mǎn)足 (如圖(1)),將沿折起到的位置,使二面角成直二面角,連接,(如圖(2)).
(1)求證:平面;
(2)在線(xiàn)段上是否存在點(diǎn),使直線(xiàn)與平面所成的角為?若存在,求出的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從某高中女學(xué)生中選取10名學(xué)生,根據(jù)其身高、體重數(shù)據(jù),得到體重關(guān)于身高的回歸方程,用來(lái)刻畫(huà)回歸效果的相關(guān)指數(shù),則下列說(shuō)法正確的是( )
A.這些女學(xué)生的體重和身高具有非線(xiàn)性相關(guān)關(guān)系
B.這些女學(xué)生的體重差異有60%是由身高引起的
C.身高為的女學(xué)生的體重一定為
D.這些女學(xué)生的身高每增加,其體重約增加
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是橢圓的左、右焦點(diǎn),點(diǎn)在橢圓上,且離心率為
(1)求橢圓的方程;
(2)若的角平分線(xiàn)所在的直線(xiàn)與橢圓的另一個(gè)交點(diǎn)為為橢圓上的一點(diǎn),當(dāng)面積最大時(shí),求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線(xiàn)L的參數(shù)方程為: ,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)C的極坐標(biāo)方程為 .
(Ⅰ)求曲線(xiàn)C的參數(shù)方程;
(Ⅱ)當(dāng) 時(shí),求直線(xiàn)l與曲線(xiàn)C交點(diǎn)的極坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直四棱柱的棱長(zhǎng)均相等,且BAD=60,M是側(cè)棱DD1的中點(diǎn),N是棱C1D1上的點(diǎn).
(1)求異面直線(xiàn)BD1和AM所成角的余弦值;
(2)若二面角的大小為,,試確定點(diǎn)N的位置.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】新冠肺炎疫情這只“黑天鵝”的出現(xiàn),給經(jīng)濟(jì)運(yùn)行帶來(lái)明顯影響,住宿餐飲、文體娛樂(lè)、交通運(yùn)輸、旅游等行業(yè)受疫情影響嚴(yán)重.隨著復(fù)工復(fù)產(chǎn)的有序推動(dòng),我市某西餐廳推出線(xiàn)上促銷(xiāo)活動(dòng):
A套餐(在下列食品中6選3)
西式面點(diǎn):蔓越莓核桃包、南瓜芝土包、黑列巴、全麥吐司;
中式面點(diǎn):豆包、桂花糕
B套餐:醬牛肉、老味燒雞熟食類(lèi)組合.
復(fù)工復(fù)產(chǎn)后某一周兩種套餐的日銷(xiāo)售量(單位:份)如下:
星期一 | 星期二 | 星期三 | 星期四 | 星期五 | 星期六 | 星期日 | |
A套餐 | 11 | 12 | 14 | 18 | 22 | 19 | 23 |
B套餐 | 6 | 13 | 15 | 15 | 37 | 20 | 41 |
(1)根據(jù)該西餐廳上面一周A、B兩種套餐的銷(xiāo)售情況,結(jié)合兩種套餐的平均銷(xiāo)售量和方差,評(píng)價(jià)兩種套餐的銷(xiāo)售情況(不需要計(jì)算,只給出結(jié)論即可);
(2)如果該西餐廳每種套餐每日銷(xiāo)量少于20份表示業(yè)績(jī)“一般”,銷(xiāo)量大于等于20份表示業(yè)績(jī)“優(yōu)秀”,求該西餐廳在這一周內(nèi)B套餐連續(xù)兩天中至少有一天銷(xiāo)量業(yè)績(jī)?yōu)?/span>“優(yōu)秀”的概率;
(3)某顧客購(gòu)買(mǎi)一份A套餐,求她所選的面點(diǎn)中所含中式面點(diǎn)個(gè)數(shù)X的分布列及數(shù)學(xué)期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com