4.已知函數(shù)f(x)=alnx+blog2$\frac{1}{x}$,若f(2017)=1,則f($\frac{1}{2017}$)=-1.

分析 由已知得f(2017)=aln2017+blog2$\frac{1}{2017}$=aln2017-blog22017=1,由此能求出f($\frac{1}{2017}$)的值.

解答 解:∵函數(shù)f(x)=alnx+blog2$\frac{1}{x}$,若f(2017)=1,
∴f(2017)=aln2017+blog2$\frac{1}{2017}$=aln2017-blog22017=1,
∴f($\frac{1}{2017}$)=aln$\frac{1}{2017}$+blog22017=-aln2017+blog22017=-1.
故答案為:-1.

點評 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時要認真審題,注意函數(shù)性質(zhì)的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

14.平面α的法向量$\overrightarrow{{n}_{1}}$=(x,1,-2),平面β的法向量$\overrightarrow{{n}_{2}}$=(-1,y,$\frac{1}{2}$),若α∥β,則x+y=$\frac{15}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.兩條直線l1:ax+(1+a)y=3,l2:(a+1)x+(3-2a)y=2互相垂直,則a的值是 ( 。
A.3B.-1C.-1或3D.0 或 3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知二次函數(shù)f(x)=ax2+(b-2)x+3,且-1,3是函數(shù)f(x)的零點.
(Ⅰ)求f(x)解析式,并解不等式f(x)≤3;
(Ⅱ)若g(x)=f(sinx),求函數(shù)g(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.若數(shù)列{an}滿足a1=$\sqrt{3}$,an+1=[an]+$\frac{1}{\{{a}_{n}\}}$([an]與{an}分別表示an的整數(shù)部分與小數(shù)部分),則a2016=( 。
A.3023+$\sqrt{3}$B.3023+$\frac{\sqrt{3}-1}{2}$C.3020+$\sqrt{3}$D.3020+$\frac{\sqrt{3}-1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.寫出命題:“若 x+y=5則 x=3且 y=2”的逆命題、否命題、逆否命題,并判斷它們的真假.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.在平面直角坐標系中,已知點A(-$\sqrt{3}$,0),B($\sqrt{3}$,0),直線MA,MB相交于點M,它們的斜率之積為常數(shù)m(m≠0),且△MAB的面積最大值為$\sqrt{3}$,設(shè)動點M的軌跡為曲線E.
(Ⅰ)求曲線E的方程;
(Ⅱ)過曲線E外一點Q作E的兩條切線l1,l2,若它們的斜率之積為-1,那么$\overrightarrow{QA}$$•\overrightarrow{QB}$是否為定值?若是,請求出該值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.在等比數(shù)列{an}中,a2020=8a2017,則公比q的值為( 。
A.2B.3C.4D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.袋子中裝有大小相同的4個球,其中2個紅球和2個白球.游戲一,從袋中取一個球,若取出的是紅球則甲獲勝,否則乙獲勝;游戲二,從袋中無放回地取一個球后再取一個球,若取出的兩個球同色則甲獲勝,否則乙獲勝,則兩個游戲( 。
A.只有游戲一公平B.只有游戲二公平
C.兩個游戲都不公平D.兩個游戲都公平

查看答案和解析>>

同步練習冊答案