函數(shù)上過點(1,0)的切線方程( )
A.B.C.D.
B

試題分析:因為,在點(1,0)處的斜率為,所以在點(1,0)處的切線方程為y-0=3(x-1),即y=3x-3.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(13分)(2011•重慶)設f(x)=x3+ax2+bx+1的導數(shù)f′(x)滿足f′(1)=2a,f′(2)=﹣b,其中常數(shù)a,b∈R.
(Ⅰ)求曲線y=f(x)在點(1,f(1))處的切線方程.
(Ⅱ)設g(x)=f′(x)e﹣x.求函數(shù)g(x)的極值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

,則曲線處的切線的斜率為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

曲線f(x)=·ex-f(0)x+x2在點(1,f(1))處的切線方程為____________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù) ().
(1)若,求函數(shù)的極值;
(2)設
① 當時,對任意,都有成立,求的最大值;
② 設的導函數(shù).若存在,使成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

函數(shù)的圖象記為E.過點作曲線E的切線,這樣的切線有且僅有兩條,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)已知函數(shù)),其中自然對數(shù)的底數(shù)。
(1)若函數(shù)圖象在處的切線方程為,求的值;
(2)求函數(shù)的單調區(qū)間;
(3)設函數(shù),當時,存在使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若曲線在點處的切線平行于x軸,則k= (     )
A.-1
B.1
C.-2
D.2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若曲線在點(1,2)處的切線經(jīng)過坐標原點,則=        

查看答案和解析>>

同步練習冊答案