在公差為d的等差數(shù)列{an}中,已知a1=10,且a1,2a2+2,5a3成等比數(shù)列.
(1)求d,an;
(2)若d<0,求|a1|+|a2|+|a3|+…+|an|.
(1)an=-n+11(n∈N*)或an=4n+6(n∈N*)(2)
【解析】(1)由題意得,a1·5a3=(2a2+2)2,由a1=10,{an}為公差為d的等差數(shù)列得,d2-3d-4=0,解得d=-1或d=4.所以an=-n+11(n∈N*)或an=4n+6(n∈N*).
(2)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn.
因?yàn)?/span>d<0,由(1)得d=-1,an=-n+11,
所以當(dāng)n≤11時(shí),|a1|+|a2|+|a3|+…+|an|=Sn=-n2+n;
當(dāng)n≥12時(shí),|a1|+|a2|+|a3|+…+|an|=-Sn+2S11=n2-n+110.
綜上所述,
|a1|+|a2|+|a3|+…+|an|=
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年(安徽專(zhuān)用)高考數(shù)學(xué)(文)仿真模擬卷1練習(xí)卷(解析版) 題型:選擇題
已知球的半徑為5,球面被互相垂直的兩個(gè)平面所截,得到的兩個(gè)圓的公共弦長(zhǎng)為2,若其中一個(gè)圓的半徑為4,則另一個(gè)圓的半徑為( )
A.3 B. C. D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年(安徽專(zhuān)用)高考數(shù)學(xué)(文)專(zhuān)題階段評(píng)估模擬卷5練習(xí)卷(解析版) 題型:選擇題
已知直線l過(guò)拋物線y2=4x的焦點(diǎn)F,交拋物線于A、B兩點(diǎn),且點(diǎn)A、B到y軸的距離分別為m,n,則m+n+2的最小值為( )
A.4 B.6 C.4 D.6
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年(安徽專(zhuān)用)高考數(shù)學(xué)(文)專(zhuān)題階段評(píng)估模擬卷4練習(xí)卷(解析版) 題型:填空題
某幾何體的三視圖如圖所示,則其體積為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年(安徽專(zhuān)用)高考數(shù)學(xué)(文)專(zhuān)題階段評(píng)估模擬卷4練習(xí)卷(解析版) 題型:選擇題
一幾何體的三視圖如圖所示,則該幾何體的體積為( )、
A.200+9π B.200+18π
C.140+9π D.140+18π
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年(安徽專(zhuān)用)高考數(shù)學(xué)(文)專(zhuān)題階段評(píng)估模擬卷3練習(xí)卷(解析版) 題型:填空題
二維空間中圓的一維測(cè)度(周長(zhǎng))l=2πr,二維測(cè)度(面積)S=πr2,觀察發(fā)現(xiàn)S′=l;三維空間中球的二維測(cè)度(表面積)S=4πr2,三維測(cè)度(體積)V=πr3,觀察發(fā)現(xiàn)V′=S.則由四維空間中“超球”的三維測(cè)度V=8πr3,猜想其四維測(cè)度W=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年(安徽專(zhuān)用)高考數(shù)學(xué)(文)專(zhuān)題階段評(píng)估模擬卷3練習(xí)卷(解析版) 題型:選擇題
下列推理中屬于歸納推理且結(jié)論正確的是( )
A.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn.由an=2n-1,求出S1=12,S2=22,S3=32,…,推斷:Sn=n2
B.由f(x)=xcos x滿(mǎn)足f(-x)=-f(x)對(duì)?x∈R都成立,推斷:f(x)=xcos x為奇函數(shù)
C.由圓x2+y2=r2的面積S=πr2,推斷:橢圓=1(a>b>0)的面積S=πab
D.由(1+1)2>21,(2+1)2>22,(3+1)2>23,…,推斷:對(duì)一切n∈N*,(n+1)2>2n
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年(安徽專(zhuān)用)高考數(shù)學(xué)(文)專(zhuān)題階段評(píng)估模擬卷2練習(xí)卷(解析版) 題型:填空題
已知sin α-3cos α=0,則=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年高考數(shù)學(xué)(文)三輪專(zhuān)題體系通關(guān)訓(xùn)練解答題押題練C組練習(xí)卷(解析版) 題型:解答題
某創(chuàng)業(yè)投資公司擬投資開(kāi)發(fā)某種新能源產(chǎn)品,估計(jì)能獲得10萬(wàn)元到1 000萬(wàn)元的投資收益.現(xiàn)準(zhǔn)備制定一個(gè)對(duì)科研課題組的獎(jiǎng)勵(lì)方案:資金y(單位:萬(wàn)元)隨投資收益x(單位:萬(wàn)元)的增加而增加,且獎(jiǎng)金不超過(guò)9萬(wàn)元,同時(shí)獎(jiǎng)金不超過(guò)投資收益的20%.
(1)若建立函數(shù)y=f(x)模型制定獎(jiǎng)勵(lì)方案,試用數(shù)學(xué)語(yǔ)言表述該公司對(duì)獎(jiǎng)勵(lì)函數(shù)f(x)模型的基本要求,并分析函數(shù)y=+2是否符合公司要求的獎(jiǎng)勵(lì)函數(shù)模型,并說(shuō)明原因;
(2)若該公司采用模型函數(shù)y=作為獎(jiǎng)勵(lì)函數(shù)模型,試確定最小的正整數(shù)a的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com