如圖,從圓外一點(diǎn)P引圓的切線PA,點(diǎn)A為切點(diǎn),割線PDB交⊙O于點(diǎn)D、B,已知PA=12,PD=8,則BD=( 。
A、15B、18C、10D、8
考點(diǎn):與圓有關(guān)的比例線段
專題:選作題,立體幾何
分析:根據(jù)切割線定理,可求PB=18,即可求出BD.
解答: 解:由切割線定理可得PA2=PD×PB,
∵PA=12,PD=8
∴PB=18.
∵PD=8,∴BD=10.
故選:C.
點(diǎn)評:本題應(yīng)用了切割線定理,考查學(xué)生的計算能力,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=cos(x-
π
6
),x∈[0,
3
]的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)是定義在R上的奇函數(shù),函數(shù)y=f(x-1)是定義在R上的偶函數(shù),則f(2012)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系中,點(diǎn)(2,
π
2
)和圓ρ=2cosθ的圓心的距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=
1
2
x2+
1
2
在點(diǎn)(1,1)處切線的傾斜角為( 。
A、0°B、45°
C、90°D、135°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個人有n把鑰匙,其中只有一把可以打開房門,他隨意的進(jìn)行試開,若試開過的鑰匙放在一邊,試開次數(shù)X為隨機(jī)變量,則P(X=k)=(  )
A、
k
n
B、
1
n
C、
k-1
n
D、
k!
n!

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

乘積(a1+a2+a3+a4)•(b1+b2)•(c1+c2+c3)展開后共有不同的項數(shù)為(  )
A、9B、12C、18D、24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果曲線y=
x2
4
-3lnx在點(diǎn)P處的切線垂直于直線y=-2x+3,那么點(diǎn)P的橫坐標(biāo)為(  )
A、1B、2C、3D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中值域為(0,+∞)的是(  )
A、y=
1
x
B、y=(
1
3
x
C、y=log
1
3
x
D、y=x
1
3

查看答案和解析>>

同步練習(xí)冊答案