精英家教網 > 高中數學 > 題目詳情
(2012•豐臺區(qū)一模)在直角坐標系xOy中,直線l的參數方程是
x=1+
3
2
t
y=
1
2
t
(t為參數).以O為極點,x軸正方向極軸的極坐標系中,圓C的極坐標方程是ρ2-4ρcosθ+3=0.則圓心到直線的距離是
1
2
1
2
分析:把參數方程化為普通方程,把極坐標方程化為直角坐標方程,利用點到直線的距離公式求出圓心到直線的距離
解答:解:由直線l的參數方程
x=1+
3
2
t
y=
1
2
t
(t為參數)消去參數化為普通方程為
3
x-3y-
3
=0..
圓C的極坐標方程ρ2-4ρcosθ+3=0 即 x2+y2-4x+3=0,即 (x-2)2+y2=1,表示以(2,0)為圓心,以1為半徑的圓.
故圓心到直線的距離是
|2
3
-0-
3
|
3+9
=
1
2

故答案為
1
2
點評:本題主要考查把參數方程化為普通方程的方法,把極坐標方程化為直角坐標方程的方法,點到直線的距離公式的應用,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2012•豐臺區(qū)一模)已知函數f(x)=ax2-(a+2)x+lnx.
(Ⅰ)當a=1時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(Ⅱ)當a>0時,函數f(x)在區(qū)間[1,e]上的最小值為-2,求a的取值范圍;
(Ⅲ)若對任意x1,x2∈(0,+∞),x1<x2,且f(x1)+2x1<f(x2)+2x2恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•豐臺區(qū)一模)某班共有學生40人,將一次數學考試成績(單位:分)繪制成頻率分布直方圖,如圖所示.
(Ⅰ)請根據圖中所給數據,求出a的值;
(Ⅱ)從成績在[50,70)內的學生中隨機選3名學生,求這3名學生的成績都在[60,70)內的概率;
(Ⅲ)為了了解學生本次考試的失分情況,從成績在[50,70)內的學生中隨機選取3人的成績進行分析,用X表示所選學生成績在[60,70)內的人數,求X的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•豐臺區(qū)一模)已知向量
a
=(sinθ,cosθ)
,
b
=(3,4)
,若
a
b
,則tan2θ等于( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•豐臺區(qū)一模)設a=0.64.2,b=70.6,c=log0.67,則a,b,c的大小關系是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•豐臺區(qū)一模)已知定義在R上的函數y=f(x)滿足f(x+2)=f(x),當-1<x≤1時,f(x)=x3.若函數g(x)=f(x)-loga|x|至少有6個零點,則a的取值范圍是( 。

查看答案和解析>>

同步練習冊答案