已知函數(shù)f (x) = ax2+bx-1 (a , b∈R且a>0 )有兩個零點,其中一個零點在區(qū)間(1,2)內(nèi),則的取值范圍為   (   )
A.(-1,1)B.(-∞,-1)C.(-∞,1)D.(-1,+∞)
D
解:設(shè)f(x)=ax2+bx-1=0,由題意得,f(1)<0,f(2)>0,
∴a+b-1<0,4a+2b-1<0.且a>0.
,視a,b為變量,作出可行域如圖.
令a-b=t,
∴當(dāng)直線a-b=t過A點(0,1)時,t最小是-1,無最大值
∴-1<t.
故選D.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某商場預(yù)計全年分批購入每臺價值為2 000元的電視機共
3 600臺.每批都購入x臺(x∈N*),且每批均需付運費400元.貯存購入的電視機全年所付保管費與每批購入電視機的總價值(不含運費)成正比.若每批購入400臺,則全年需用去運輸和保管總費用43 600元.現(xiàn)在全年只有24 000元資金用于支付這筆費用,請問能否恰當(dāng)安排每批進(jìn)貨的數(shù)量使資金夠用?寫出你的結(jié)論,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分14分)定義在D上的函數(shù),如果滿足;對任意,存在常數(shù),都有成立,則稱是D上的有界函數(shù),其中M稱為函數(shù)的上界。
已知函數(shù)
(1)當(dāng)時,求函數(shù)上的值域,并判斷函數(shù)上是否為有界函數(shù),請說明理由;
(2)若函數(shù)上是以3為上界函數(shù)值,求實數(shù)的取值范圍;
(3)若,求函數(shù)上的上界T的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知:兩個函數(shù)的定義域和值域都是,其定義如下表:
x
1
2
3
 
x
1
2
3
 
x
1
2
3
f(x)
2
3
1
g(x)
1
3
2
g[f(x)]
 
 
 
填寫后面表格,其三個數(shù)依次為:            .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

購買手機的“全球通”卡,使用須付“基本月租費”(每月需交的固定費用)50元,在市內(nèi)通話時每分鐘另收話費0.40元;購買“神州行”卡,使用時不收“基本月租費”,但在市內(nèi)通話時每分鐘話費為0.60元.若某用戶每月手機費預(yù)算為120元,則它購買_________卡才合算.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)的圖像,并寫出該函數(shù)的單調(diào)區(qū)間與值域。
(1)利用絕對值及分段函數(shù)知識,將函數(shù)的解析式寫成分段函數(shù);
(2)在給出的坐標(biāo)系中畫出的圖象,并根據(jù)圖象寫出函數(shù)的單調(diào)區(qū)間和值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

定義在非零實數(shù)集上的函數(shù)滿足,且是區(qū)間上的遞增函數(shù). (1)求:的值;(2)求證:;(3)解不等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)已知定義在實數(shù)集上的函數(shù)fn(x)=xn,n∈N*,其導(dǎo)函數(shù)記為,且滿足,a,x1,x2為常數(shù),x1≠x2
(1)試求a的值;
(2)記函數(shù),x∈(0,e],若F(x)的最小值為6,求實數(shù)b的值;
(3)對于(2)中的b,設(shè)函數(shù),A(x1,y1),B(x2,y2)(x1<x2)是函數(shù)g(x)圖象上兩點,若,試判斷x0,x1,x2的大小,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

數(shù)a、b滿足,下列5個關(guān)系式:①;②;
;④;⑤.其中不可能成立的關(guān)系有  (   )  
A.2個B.3個C.4個D.5個

查看答案和解析>>

同步練習(xí)冊答案