12.命題p:不等式|x|+|x+1|>m的解集為R,命題q:函數(shù)f(x)=x2-2mx+1在(2,+∞)上是增函數(shù),若p∨q為真,p∧q為假,求實數(shù)m的取值范圍.

分析 分別求出p,q為真時的m的范圍,通過討論p,q的真假,求出m的范圍即可.

解答 解:∵不等式|x|+|x+1|>m的解集為R,
∴|x|+|x+1|≥|x-x-1|>m,解得:m<1,
∴命題p:m<1,
∵函數(shù)f(x)=x2-2mx+1在(2,+∞)上是增函數(shù),
∴對稱軸x=m≤2,
∴命題q:m≤2;
∵p∨q為真,p∧q為假,
∴p,q一真一假,
①p為真,q為假,則無解
②q為真,p為假,則1≤m≤2,
綜上所述:1≤m≤2.

點評 本題考查了復合命題的判斷,考查絕對值不等式以及二次函數(shù)的性質(zhì),是一道中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

2.在△ABC中,角A,B,C所對的邊分別為a,b,c,已知cosC+(cosA-$\sqrt{3}$sinA)cosB=0.
(Ⅰ)求角B的大。
(Ⅱ)若a=2,b=$\sqrt{7}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.(1)兩個共軛復數(shù)的差是純虛數(shù);
(2)兩個共軛復數(shù)的和不一定是實數(shù);
(3)若復數(shù)a+bi(a,b∈R)是某一元二次方程的根,則a-bi是也一定是這個方程的根;
(4)若z為虛數(shù),則z的平方根為虛數(shù),
其中正確的個數(shù)為( 。
A.3B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.直角三角形邊長分別是3cm,4cm,5cm,繞斜邊旋轉(zhuǎn)一周形成一個幾何體,求這個幾何體的表面積和體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.(1)若正數(shù)x,y滿足x+3y=5xy,求3x+4y的最小值;
(2)已知x>0,y>0,x+2y+2xy=8,則x+2y的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.對標有不同編號的16件正品和4件次品的產(chǎn)品進行檢測,不放回地依次摸出2件.在第一次摸出次品的條件下,第二次也摸到次品的概率是( 。
A.$\frac{1}{5}$B.$\frac{3}{95}$C.$\frac{3}{19}$D.$\frac{1}{95}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知不等式ax2+bx+c>0的解集為{x|3<x<6},則不等式cx2+bx+a<0的解集為( 。
A.{x|x>$\frac{1}{3}}$}B.{x|x<$\frac{1}{6}}\right\}$}C.{x|$\frac{1}{6}$<x<$\frac{1}{3}}$}D.{x|x<$\frac{1}{6}$或x>$\frac{1}{3}$}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.在計算“1×2+2×3+…+n(n+1)”時,某同學學到了如下一種方法:
先改寫第k項:k(k+1)=$\frac{1}{3}$[k(k+1)(k+2)-(k-1)k(k+1)],
由此得1×2=$\frac{1}{3}$(1×2×3-0×1×2),
2×3=$\frac{1}{3}$(2×3×4-1×2×3),
…,
n(n+1)=$\frac{1}{3}$[n(n+1)(n+2)-(n-1)n(n+1)]
相加,得1×2+2×3+…+n(n+1)=$\frac{1}{3}$n(n+1)(n+2).
類比上述方法,請你計算“1×2×3×4+2×3×4×+…+n(n+1)(n+2)(n+3)”,其結(jié)果是$\frac{1}{5}n(n+1)(n+2)(n+3)(n+4)$.(結(jié)果寫出關(guān)于n的一次因式的積的形式)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.一輛汽車在高速公路上行駛,由于遇到緊急情況而剎車,以速度v(t)=7-3t+$\frac{25}{1+t}$(t的單位:s,v的單位:m/s)行駛至停止,在此期間汽車繼續(xù)行駛的距離(單位:m)是(  )
A.1+25ln 5B.8+25ln $\frac{11}{3}$C.4+25ln 5D.4+50ln 2

查看答案和解析>>

同步練習冊答案