下列4個命題:

①已知函數(shù)y=2sin(x+φ)(0<φ<π)的圖象如圖所示,則;

②在△ABC中,∠A>∠B是sinA>sinB的充要條件;

③定義域為R的奇函數(shù)f(x)滿足f(1+x)=-f(x),則f(x)的圖象關于點(,0)對稱;

④對于函數(shù)f(x)=x2+mx+n,若f(a)>0,f(b)>0,則f(x)在(a,b)內(nèi)至多有一個零點;其中正確命題序號________.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

10、已知函數(shù)f(x)=x3+bx2+cx+d(b,c,d為常數(shù)),當k∈(-∞,0)∪(4,+∞)時,f(x)-k=0只有一個實根;當k∈(0,4)時,f(x)-k=0只有3個相異實根,現(xiàn)給出下列4個命題:
①f(x)=4和f′(x)=0有一個相同的實根;
②f(x)=0和f′(x)=0有一個相同的實根;
③f(x)+3=0的任一實根大于f(x)-1=0的任一實根;
④f(x)+5=0的任一實根小于f(x)-2=0的任一實根.
其中正確命題的序號是
①②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

16、給出下列4個命題:
①若一個函數(shù)的圖象與其反函數(shù)的圖象有交點,則交點一定在直線y=x上;
②函數(shù)y=f(1-x)的圖象與函數(shù)y=f(1+x)的圖象關于直線x=1對稱;
③若奇函數(shù)y=f(x)的圖象關于直線x=a對稱,則y=f(x)的周期為2a;
④已知集合A={1,2,3},B={4,5},則以A為定義域,以B為值域的函數(shù)有8個.
在上述四個命題中,所有不正確命題的序號是
①②③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=f(x),x∈R,有下列4個命題:
①若f(1+2x)=f(1-2x),則f(x)的圖象關于直線x=1對稱;
②f(x-2)與f(2-x)的圖象關于直線x=2對稱;
③若f(x)為偶函數(shù),且f(2+x)=-f(x),則f(x)的圖象關于直線x=2對稱;
④若f(x)為奇函數(shù),且f(x)=f(-x-2),則f(x)的圖象關于直線x=1對稱.
其中正確的命題為
①②③④
①②③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列4個命題:
①已知
e
是單位向量,|
a
+
e
|=|
a
-2
e
|,則
a
e
方向上的投影為
1
2
;
②關于x的不等式a<sin2x+
2
sin2x
恒成立,則a的取值范圍是a<2
2
;
③函數(shù)f(x)=alog2|x|+x+b為奇函數(shù)的充要條件是a+b=0;
④將函數(shù)y=sin(2x+
π
3
)圖象向右平移
π
3
個單位,得到函數(shù)y=sin2x的圖象
其中正確的命題序號是
(填出所有正確命題的序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知m、n是兩條不同的直線,α、β是兩個不同的平面,有下列4個命題:①若m∥n,n?α,則m∥α;②若m⊥n,m⊥α,n?α,則n∥α;③若α⊥β,m⊥α,n⊥β,則m⊥n;④若m、n是異面直線,m?α,n?β,m∥β,則n∥α.其中正確的命題有(  )

查看答案和解析>>

同步練習冊答案