【題目】設(shè)函數(shù)的定義域為,若存在閉區(qū)間,使得函數(shù)滿足:①在上是單調(diào)函數(shù);②在上的值域是,則稱區(qū)間是函數(shù)的“和諧區(qū)間”.下列結(jié)論錯誤的是( )
A. 函數(shù)存在“和諧區(qū)間”
B. 函數(shù)不存在“和諧區(qū)間”
C. 函數(shù)存在“和諧區(qū)間”
D. 函數(shù) (且)不存在“和諧區(qū)間”
【答案】D
【解析】分析:利用函數(shù)單調(diào)性的判別方法,逐個選項檢驗函數(shù)是否存在單調(diào)區(qū)間。若函數(shù)在上的值域是,則方程應(yīng)該有兩個根。
詳解: 對于選項A,存在區(qū)間[0,2], 在上是單調(diào)增函數(shù);②在上的值域是,故A正確;
對于選項B,假設(shè)存在區(qū)間,函數(shù)在區(qū)間上為增函數(shù),
由在上的值域是,可得,
解得 ,這與矛盾,故假設(shè)錯誤,所以選項B正確;
對于選項C,由函數(shù),可得
。
取區(qū)間,在此區(qū)間上,
所以函數(shù)在區(qū)間上為增函數(shù)。
因為 成立,
所以函數(shù)在區(qū)間上的值域為.
所以選項C正確。
對于選項D,不妨設(shè),則函數(shù)在定義域內(nèi)為單調(diào)增函數(shù)。
若存在“和諧區(qū)間”,則由得,
所以是方程的兩個根,
即是方程的兩個根。
因為該方程有兩個正根,所以存在“和諧區(qū)間”。所以選項D錯。
所以選D。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)安排甲、乙、丙、丁、戊5名同學(xué)參加廈門市華僑博物院志愿者服務(wù)活動,每人從事禮儀、導(dǎo)游、翻譯、講解四項工作之一,每項工作至少有一人參加. 甲、乙不會導(dǎo)游但能從事其他三項工作,丙、丁、戊都能勝任四項工作,則不同安排方案的種數(shù)是____________.(用數(shù)字作答)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法錯誤的是( )
A. 線性回歸直線至少經(jīng)過其樣本數(shù)據(jù)點(diǎn)中的一個點(diǎn)
B. 在統(tǒng)計學(xué)中,獨(dú)立性檢驗是檢驗兩個分類變量是否有關(guān)系的一種統(tǒng)計方法
C. 在回歸分析中,相關(guān)指數(shù)越大,模擬的效果越好
D. 在殘差圖中,殘差分布的帶狀區(qū)域的寬度越狹窄,其模擬的效果越好
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將邊長為1的正方形沿對角線折起,使得平面平面,在折起后形成的三棱錐中,給出下列三種說法:
①是等邊三角形;②;③三棱錐的體積是.
其中正確的序號是__________(寫出所有正確說法的序號).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=|2x+1|+|x﹣a|,a∈R. (Ⅰ)當(dāng)a=2時,求不等式f(x)<4的解集.
(Ⅱ)當(dāng)a< 時,對于x∈(﹣∞,﹣ ],都有f(x)+x≥3成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的定義域為(0,+),若在(0,+)上為增函數(shù),則稱為“一階比增函數(shù)”;若在(0,+)上為增函數(shù),則稱為”二階比增函數(shù)”。我們把所有“一階比增函數(shù)”組成的集合記為1,所有“二階比增函數(shù)”組成的集合記為2。
(1)已知函數(shù),若∈1,求實數(shù)的取值范圍,并證明你的結(jié)論;
(2)已知0<a<b<c,∈1且的部分函數(shù)值由下表給出:
t | 4 |
求證:;
(3)定義集合,且存在常數(shù)k,使得任取x∈(0,+),<k},請問:是否存在常數(shù)M,使得任意的∈,任意的x∈(0,+),有<M成立?若存在,求出M的最小值;若不存在,說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com