化簡:
sin(α+nπ)+sin(α-nπ)
sin(α+nπ)cos(α-nπ)
(n∈Z).
考點:運用誘導公式化簡求值
專題:計算題,分類討論,三角函數(shù)的求值
分析:討論當n=2k(k∈Z)時,當n=2k+1(k∈Z)時,運用誘導公式:2kπ+α,π+α,π-α,-α,結合同角的三角函數(shù)的基本關系式,化簡即可得到.
解答: 解:當n=2k(k∈Z)時,
sin(α+nπ)+sin(α-nπ)
sin(α+nπ)cos(α-nπ)
=
sinα+sinα
sinαcosα

=
2
cosα
=2secα;
當n=2k+1(k∈Z)時,
sin(α+nπ)+sin(α-nπ)
sin(α+nπ)cos(α-nπ)
=
sin(π+α)+sin(α-π)
sin(π+α)cos(α-π)

=
-sinα-sinα
(-sinα)•(-cosα)
=-2secα.
點評:本題考查誘導公式和同角的三角函數(shù)的關系式,考查運算能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

惠州市某縣區(qū)共有甲、乙、丙三所高中的高三文科學生共有800人,各學校男、女生人數(shù)如表:
甲高中乙高中丙高中
女生153xy
男生9790z
已知在三所高中的所有高三文科學生中隨機抽取1人,抽到乙高中女生的概率為0.2.
(1)求表中x的值;
(2)惠州市第三次調(diào)研考試后,該縣區(qū)決定從三所高中的所有高三文科學生中利用隨機數(shù)表法抽取100人進行成績統(tǒng)計分析,先將800人按001,002,…,800進行編號.如果從第8行第7列的數(shù)開始向右讀,請你依次寫出最先檢測的3個人的編號;
(下面摘取了隨機數(shù)表中第7行至第9行)
84421753315724550688770474476721763350268392
63015316591692753862982150717512867358074439
13263321134278641607825207443815032442997931
(3)已知y≥145,z≥145,求丙高中學校中的女生比男生人數(shù)多的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義運算
ab
cd
=ad+bc
(1)若
3
sin
x
4
1
cos2
x
4
cos
x
4
=0,求cos(
2
3
π-x)的值;
(2)記f(x)=
3
sin
x
4
cos2
x
4
1cos
x
4
,在△ABC中,有A,B,C滿足條件:sinAcosB-cosBsinC=cosCsinB-cosBsinA,求函數(shù)f(A)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
3
sinxcosx+cos2x-
1
2

(Ⅰ)求函數(shù)f(x)的最小正周期T;
(Ⅱ)把f(x)的圖象向左平移
π
12
個單位,得到的圖象對應的函數(shù)為g(x),求函數(shù)g(x)在[0,
π
4
]的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知圓E:(x+
3
)2+y2
=16,點F(
3
,0)
,P是圓E上任意一點.線段PF的垂直平分線和半徑PE相交于Q.
(Ⅰ)求動點Q的軌跡Γ的方程;
(Ⅱ)設直線l與(Ⅰ)中軌跡Γ相交于A,B兩點,直線OA,l,OB的斜率分別為k1,k,k2(其中k>0).△OAB的面積為S,以OA,OB為直徑的圓的面積分別為S1,S2.若k1,k,k2恰好構成等比數(shù)列,求
S1+S2
S
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=x2-
1
2
lnx+1在其定義域內(nèi)的一個子區(qū)間(a-1,a+1)內(nèi)存在極值,則實數(shù)a的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a>0,函數(shù)f(x)=
2016x+1-2014
2016x+1
(x∈[-a,a])的最大值為M,最小值為N,M+N=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若數(shù)列{an}的前n項和Sn滿足:Sn=2an+1(n∈N*).
(1)求數(shù)列{an}的前三項和a1,a2,a3
(2)求{an-1}的通項公式,并求出an的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列函數(shù)中,在其定義域內(nèi)既是奇函數(shù),又是減函數(shù)的是(  )
A、y=-x3
B、y=sinx
C、y=tanx
D、y=(
1
2
x

查看答案和解析>>

同步練習冊答案