“∵AC,BD是菱形ABCD的對(duì)角線,∴AC,BD互相垂直且平分.”此推理過(guò)程依據(jù)的大前提是   
【答案】分析:用三段論形式推導(dǎo)一個(gè)結(jié)論成立,大前提應(yīng)該是結(jié)論成立的依據(jù),由四邊形ABCD為菱形,得到四邊形ABCD的對(duì)角線互相垂直的結(jié)論,得到大前提.
解答:解:用三段論形式推導(dǎo)一個(gè)結(jié)論成立,
大前提應(yīng)該是結(jié)論成立的依據(jù),
∵由四邊形ABCD是菱形,所以四邊形ABCD的對(duì)角線互相垂直的結(jié)論,
∴大前提一定是菱形的對(duì)角線互相垂直,
故答案為:菱形的對(duì)角線互相垂直.
點(diǎn)評(píng):本題考查用三段論形式推導(dǎo)一個(gè)命題成立,要求我們填寫(xiě)大前提,這是常見(jiàn)的一種考查形式,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

“∵AC,BD是菱形ABCD的對(duì)角線,∴AC,BD互相垂直且平分.”此推理過(guò)程依據(jù)的大前提是
菱形的對(duì)角線互相垂直且平分
菱形的對(duì)角線互相垂直且平分

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖2-5-3所示,已知ABCD是菱形,AC和BD是它的兩條對(duì)角線.

求證:AC⊥BD.

圖2-5-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如下圖所示,已知ABCD是菱形,AC和BD是它的兩對(duì)角線,求證:AC⊥BD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年福建省三明九中高二(上)第二次月考數(shù)學(xué)試卷(美術(shù)班)(解析版) 題型:填空題

“∵AC,BD是菱形ABCD的對(duì)角線,∴AC,BD互相垂直且平分.”此推理過(guò)程依據(jù)的大前提是   

查看答案和解析>>

同步練習(xí)冊(cè)答案