已知函數(shù)f(x)=ax-3,g(x)=bx-1+cx-2(a,b∈R)且g(-
12
)-g(1)=f(0)
(1)試求b,c所滿(mǎn)足的關(guān)系式;
(2)若b=0,方程f(x)=g(x)在(0,+∞)有唯一解,求a的取值范圍.
分析:(1)根據(jù)題意將自變量函數(shù)的解析式和所給的式子,化簡(jiǎn)求出b,c所滿(mǎn)足的關(guān)系式即可;
(2)由b=0代入(1)得到的式子可得c=-1,再把方程f(x)=g(x)化簡(jiǎn)并分離出a,令x-1=t,將原條件轉(zhuǎn)化為a=3t-t3在(0,+∞)上有唯一解,構(gòu)造h(t)=3t-t3(t>0),求出導(dǎo)數(shù)和臨界點(diǎn),并求出函數(shù)的單調(diào)區(qū)間,求出得到函數(shù)的極大值,可得到a的取值范圍.
解答:解:(1)由g(-
1
2
)-g(1)=f(0)
得,(2b+4c)-(b+c)=-3,
∴b,c所滿(mǎn)足的關(guān)系式為b-c-1=0.
(2)由b=0,b-c-1=0,可得c=-1,
因?yàn)榉匠蘤(x)=g(x),即ax-3=-x-2,
可化為a=3x-1-x-3,令x-1=t,
由題意可得,a=3t-t3在(0,+∞)上有唯一解.
令h(t)=3t-t3(t>0),由h′(t)=3-3t2=0,可得t=1,
當(dāng)0<t<1時(shí),由h′(t)>0,可知h(t)是增函數(shù);
當(dāng)t>1時(shí),由h′(t)<0,可知h(t)是減函數(shù),
故當(dāng)t=1時(shí),h(t)取極大值2;
故當(dāng)a=2或a≤0時(shí),方程f(x)=g(x)有且僅有一個(gè)正實(shí)數(shù)解.
則所求a的取值范圍為{a|a=2或a≤0}.
點(diǎn)評(píng):本題考查了函數(shù)與方程的綜合應(yīng)用,利用換元法轉(zhuǎn)化成二次方程進(jìn)行求解,導(dǎo)數(shù)與函數(shù)單調(diào)性的應(yīng)用,熟練掌握利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值與最值、把問(wèn)題等價(jià)轉(zhuǎn)化等是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當(dāng)a∈[-2,
1
4
)
時(shí),求f(x)的最大值;
(2)設(shè)g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點(diǎn)的連線(xiàn)的斜率,否存在實(shí)數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過(guò)原點(diǎn),則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a|x|的圖象經(jīng)過(guò)點(diǎn)(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿(mǎn)足a•b≠0
(1)若a•b>0,判斷函數(shù)f(x)的單調(diào)性;
(2)若a=-3b,求f(x+1)>f(x)時(shí)的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當(dāng)a<0時(shí),若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號(hào)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案