如圖,△ABC為正三角形,EC⊥平面ABC,BD∥CE,且CE=2BD,M是EA的中點(diǎn)
(Ⅰ)判斷BM與DE的位置關(guān)系,不需證明;
(Ⅱ)求證:DM∥平面ABC;
(Ⅲ)求證:平面DEA⊥平面ECA.
考點(diǎn):平面與平面垂直的判定,直線(xiàn)與平面平行的判定
專(zhuān)題:空間位置關(guān)系與距離
分析:(Ⅰ)BM與DE是異面直線(xiàn).
(Ⅱ)取AC中點(diǎn)N,連結(jié)MN,由已知條件推導(dǎo)出四邊形MNBD是平行四邊形,由此能證明DM∥平面ABC.
(Ⅲ)由等邊三角形性質(zhì)得BN⊥AC,由線(xiàn)面垂直得BN⊥CE,從而得BN⊥平面ACE,再由DM∥BN,能證明平面DEA⊥平面ECA.
解答: (Ⅰ)BM與DE是異面直線(xiàn).
(Ⅱ)證明:取AC中點(diǎn)N,連結(jié)MN,
∵M(jìn)是EA的中點(diǎn),∴MN=
1
2
CE
,且MN∥CE,
又由已知BD∥CE,且BD=
1
2
CE
,
∴MN∥BD,且MN=BD,
∴四邊形MNBD是平行四邊形,
∴DM∥BN,又DM不包含平面ABC,BN?平面ABC,
∴DM∥平面ABC.
(Ⅲ)∵△ABC為正三角形,N為AC的中點(diǎn),∴BN⊥AC,
又CE⊥平面ABC,BN?平面ABC,∴BN⊥CE,
∵AC∩CE=C,且AC、CE?平面ACE,
∴BN⊥平面ACE,
由(Ⅱ)知DM∥BN,
∴DM⊥平面ACE,又∵DM?平面DEA,
∴平面DEA⊥平面ECA.
點(diǎn)評(píng):本題考查直線(xiàn)與平面平行的證明,考查平面與平面垂直的證明,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=
1-(
1
2
)x
,求該函數(shù)的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在側(cè)棱與底面垂直的四棱柱ABCD-A1B1C1D1中,AB∥CD,AB⊥BC,且A1A=AB=BC=1,CD=2.
(1)求證:AB1⊥平面A1BC;
(2)在線(xiàn)段CD上是否存在點(diǎn)N,使得D1N∥平面A1BC?若存在,求出此時(shí)三棱錐N-AA1C的體積;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四棱錐P-ABCD中,底面ABCD是邊長(zhǎng)為2
2
的正方形,其他四個(gè)側(cè)面是側(cè)棱長(zhǎng)為
5
的等腰三角形,過(guò)棱PD的中點(diǎn)E作截面EFGH,使截面EFGH∥平面PBC,且截面EFGH分別交四棱錐各棱F、G、H.
(Ⅰ)證明:EF∥平面ABCD;
(Ⅱ)求四棱錐P-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在等差數(shù)列{an}中,a1=
9
2
,其前n項(xiàng)和為Sn,等比數(shù)列{bn}的各項(xiàng)均為正數(shù),b1=1,比為q,且S2+b3=21,S2-b3=q
(Ⅰ)求通項(xiàng)公式an與bn;
(Ⅱ)設(shè)數(shù)列{cn}滿(mǎn)足cn•Sn=1,求{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,三棱柱ABC-A1B1C1是直棱柱,AB⊥AC,AB=AC=AA1=2,點(diǎn)MN分別為A1B和B1C1的中點(diǎn).
(Ⅰ)求證:MN∥平面A1ACC1
(Ⅱ)求點(diǎn)B到平面ACM的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿(mǎn)足:an+2an-an+1=tn(t-1),a1=1,a2=t(t>1,t為常數(shù))
(1)求a3;
(2)求證:an+1>an≥1;
(3)求證:{an}滿(mǎn)足an+2-2tan+1+tan=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x-alnx+
1+a
x
(a∈R).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若f(x)在區(qū)間[1,e]上存在一個(gè)零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,AD⊥CD,且DB平分∠ADC,AC與BD交于O點(diǎn),E為PC的中點(diǎn),AD=CD=1,PD=2,DB=2
2

(Ⅰ)證明PA∥平面BDE;
(Ⅱ)證明AC⊥平面PBD;
(Ⅲ)求三棱錐B-AEC的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案