(2013•徐州一模)如圖,在平面直角坐標(biāo)系xOy中,橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
的焦距為2,且過點(
2
,
6
2
)

(1)求橢圓E的方程;
(2)若點A,B分別是橢圓E的左、右頂點,直線l經(jīng)過點B且垂直于x軸,點P是橢圓上異于A,B的任意一點,直線AP交l于點M.
(ⅰ)設(shè)直線OM的斜率為k1,直線BP的斜率為k2,求證:k1k2為定值;
(ⅱ)設(shè)過點M垂直于PB的直線為m.求證:直線m過定點,并求出定點的坐標(biāo).
分析:(1)利用橢圓的標(biāo)準(zhǔn)方程及參數(shù)a,b,c之間的關(guān)系即可求出;
(2)(i)利用斜率的計算公式、三點共線的斜率性質(zhì)、點在橢圓上的性質(zhì)即可證明;
(ii)利用直線的點斜式及其(i)的有關(guān)結(jié)論即可證明.
解答:解:(1)由題意得2c=2,∴c=1,又
2
a2
+
3
2b2
=1
,a2=b2+1.
消去a可得,2b4-5b2-3=0,解得b2=3或b2=-
1
2
(舍去),則a2=4,
∴橢圓E的方程為
x2
4
+
y2
3
=1

(2)(ⅰ)設(shè)P(x1,y1)(y1≠0),M(2,y0),則k1=
y0
2
,k2=
y1
x1-2
,
∵A,P,M三點共線,∴y0=
4y1
x1+2
,∴k1k2=
y0y1
2(x1-2)
=
4y12
2(
x
2
1
-4)

∵P(x1,y1)在橢圓上,∴
y
2
1
=
3
4
(4-
x
2
1
)
,故k1k2=
4y12
2(
x
2
1
-4)
=-
3
2
為定值.
(ⅱ)直線BP的斜率為k2=
y1
x1-2
,直線m的斜率為km=
2-x1
y1
,
則直線m的方程為y-y0=
2-x1
y1
(x-2)
y=
2-x1
y1
(x-2)+y0=
2-x1
y1
x-
2(2-x1)
y1
+
4y1
x1+2
=
2-x1
y1
x+
2(x12-4)+4
y
2
1
(x1+2)y1
=
2-x1
y1
x+
2(x12-4)+12-3
x
2
1
(x1+2)y1
=
2-x1
y1
x+
2-x1
y1
=
2-x1
y1
(x+1)
,
y=
2-x1
y1
(x+1)

所以直線m過定點(-1,0).
點評:熟練掌握橢圓的定義及其性質(zhì)、斜率的計算公式及其直線的點斜式是解題的關(guān)鍵.善于利用已經(jīng)證明過的結(jié)論是解題的技巧.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•徐州一模)已知函數(shù)f(x)=ax+x2-xlna(a>0,a≠1).
(1)求函數(shù)f(x)在點(0,f(0))處的切線方程;
(2)求函數(shù)f(x)單調(diào)增區(qū)間;
(3)若存在x1,x2∈[-1,1],使得|f(x1)-f(x2)|≥e-1(e是自然對數(shù)的底數(shù)),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•徐州一模)如圖,兩座建筑物AB,CD的底部都在同一個水平面上,且均與水平面垂直,它們的高度分別是9m和15m,從建筑物AB的頂部A看建筑物CD的張角∠CAD=45°.
(1)求BC的長度;
(2)在線段BC上取一點P(點P與點B,C不重合),從點P看這兩座建筑物的張角分別為∠APB=α,∠DPC=β,問點P在何處時,α+β最?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•徐州一模)一個社會調(diào)查機構(gòu)就某地居民的月收入調(diào)查了10000人,并根據(jù)所得數(shù)據(jù)畫出了如圖所示的頻率分布直方圖,現(xiàn)要從這10000人中再用分層抽樣的方法抽出100人作進一步調(diào)查,則月收入在[2500,3000)(元)內(nèi)應(yīng)抽出
25
25
人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•徐州一模)選修:4-2:矩陣與變換
若圓C:x2+y2=1在矩陣A=
a,0
0,b
(a>0,b>0)對應(yīng)的變換下變成橢圓E:
x2
4
+
y2
3
=1
,求矩陣A的逆矩陣A-1

查看答案和解析>>

同步練習(xí)冊答案