已知⊙C:x2+y2+2x-4y+1=0.
(1)若⊙C的切線在x軸、y軸上截距相等,求切線的方程.
(2)從圓外一點(diǎn)P(x0,y0)向圓引切線PM,M為切點(diǎn),O為原點(diǎn),若|PM|=|PO|,求使|PM|最小的P點(diǎn)坐標(biāo).
分析:將圓C的方程化為標(biāo)準(zhǔn)方程,找出圓心坐標(biāo)與半徑,
(1)分兩種情況:當(dāng)切線過原點(diǎn)時(shí)設(shè)為y=kx,由圓心到切線的距離等于圓的半徑列出關(guān)于k的方程,求出方程的解得到k的值;當(dāng)切線不過原點(diǎn)時(shí),設(shè)為x+y=a,同理求出a的值,即可確定出切線方程;
(2)根據(jù)|PM|=|PO|,利用兩點(diǎn)間的距離公式列出關(guān)系式,得到x0與y0的關(guān)系式,用y0表示出x0,代入|PM|中,利用二次函數(shù)的性質(zhì)求出|PM|最小時(shí)y0的值,進(jìn)而確定出x0的值,即可確定出此時(shí)P的坐標(biāo).
解答:解:⊙C:(x+1)2+(y-2)2=4,圓心C(-1,2),半徑r=2,
(1)若切線過原點(diǎn)設(shè)為y=kx,則
|-k-2|
1+k2
=2,
解得:k=0或
4
3
,
若切線不過原點(diǎn),設(shè)為x+y=a,則
|-1+2-a|
2
=2,
解得:a=1±2
2

則切線方程為:y=0,y=
4
3
x,x+y=1+2
2
和x+y=1-2
2
;
(2)∵|PM|=|PO|,即
x02+y02+2x0-4y0+1
=
x02+y02
,
∴2x0-4y0+1=0,
對(duì)于|PM|=
x02+y02+2x0-4y0+1
=
5y02-2y0+
1
4
,
∵P在⊙C外,
∴(x0 +1)2+(y0-2)2>4,
將x0=2y0-
1
2
代入得5y02-2y0+
1
4
>0,
∴當(dāng)y0=
1
5
時(shí),5y02-2y0+
1
4
最小,此時(shí)|PM|最小,x0=2y0-
1
2
=-
1
10
,
∴|PM|min=
1
20
,此時(shí)P(-
1
10
,
1
5
).
點(diǎn)評(píng):此題考查了圓的切線方程,圓的標(biāo)準(zhǔn)方程,以及直線與圓的位置關(guān)系,當(dāng)直線與圓相切時(shí),圓心到切線的距離等于圓的半徑,熟練掌握此性質(zhì)是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知⊙C:x2+y2=1,點(diǎn)A(-2,0)和點(diǎn)B(2,a),從點(diǎn)A觀察點(diǎn)B,要使視線不被⊙C擋住,則實(shí)數(shù)a的取值范圍是(  )
A、(-∞,-2)∪(2,+∞)
B、(-∞,-
2
3
3
)∪(
2
3
3
,+∞)
C、(-∞,-
4
3
3
)∪(
4
3
3
,+∞)
D、(-
4
3
3
,
4
3
3
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知⊙C:x2+y2+Dx+Ey+F=0,則F=E=0且D<0是⊙C與y軸相切于原點(diǎn)的( 。
A、充分不必要條件B、必要不充分條件C、充要條件D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知C:x2+y2+2x-4y+3=0.圓C外有一動(dòng)點(diǎn)P,點(diǎn)P到圓C的切線長(zhǎng)等于它到原點(diǎn)O的距離,
(1)求點(diǎn)P的軌跡方程.
(2)當(dāng)點(diǎn)P到圓C的切線長(zhǎng)最小時(shí),切點(diǎn)為M,求∠MPC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知⊙C:x2+y2-2x-2y+1=0,直線l與⊙C相切且分別交x軸、y軸正向于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn),且|OA|=a,|OB|=b(a>2,b>2).
(Ⅰ)求線段AB中點(diǎn)的軌跡方程;
(Ⅱ)求△ABC面積的極小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案