分析 (1)利用同角三角函數(shù)基本關系式、正弦定理即可得出.
(2)利用三角形面積計算公式、余弦定理即可得出.
解答 解:(1)在△ABC中,∵$cosA=\frac{5}{13}>0,且0<A<π$,
∴$sinA=\sqrt{1-{{cos}^2}A}=\frac{12}{13}$,
由正弦定理得$\frac{a}{sinA}=\frac{c}{sinC}$,∴$sinC=\frac{csinA}{a}=\frac{1}{3}$.
(2)∵${S_{△ABC}}=\frac{1}{2}bcsinA=6,c=13$,∴b=1.
由余弦定理得a2=b2+c2-2bccosA=160,∴$a=4\sqrt{10}$.
點評 本題考查了正弦定理余弦定理、三角形面積計算公式、同角三角函數(shù)基本關系式,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 8 | B. | 4 | C. | $\frac{8\sqrt{3}}{3}$ | D. | $\frac{4\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -2或6 | B. | 0或4 | C. | -1 或$\sqrt{3}$ | D. | -1或3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=$±\sqrt{2}$x | B. | y=±2x | C. | y=±$\sqrt{3}$x | D. | y=±2$\sqrt{2}$x |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | $\sqrt{3}$ | C. | 3 | D. | 2$\sqrt{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com