已知p:方程x2+mx+1=0有兩個(gè)不等的負(fù)實(shí)根,q:方程4x2+4(m-2)x+1=0無(wú)實(shí)根.若“p或q”為真,“p且q”為假.求實(shí)數(shù)m的取值范圍.
分析:根據(jù)題意,首先求得p、q為真時(shí)m的取值范圍,再由題意p,q中有且僅有一為真,一為假,分p假q真與p真q假兩種情況分別討論,最后綜合可得答案.
解答:解:由題意p,q中有且僅有一為真,一為假,
若p為真,則其等價(jià)于
m2-4>0
-m<0
,解可得,m>2;
若q為真,則其等價(jià)于△<0,即可得1<m<3,
若p假q真,則
m≤2
1<m<3
,解可得1<m≤2;
若p真q假,則
m>2
m≤1或m≥3
,解可得m≥3;
綜上所述:m∈(1,2]∪[3,+∞).
點(diǎn)評(píng):本題考查命題復(fù)合真假的判斷與運(yùn)用,難點(diǎn)在于正確分析題意,轉(zhuǎn)化為集合間的包含關(guān)系,綜合可得答案.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

24、已知p:方程x2+mx+1=0有兩個(gè)不等的負(fù)根;q:方程x2+(m-2)x+1=0無(wú)實(shí)根.若p∨q為真,p∧q為假,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知p:方程x2+mx+1=0有兩個(gè)不等的負(fù)實(shí)根;q:對(duì)任意實(shí)數(shù)x不等式4x2+4(m-2)x+1>0恒成立,若p或q為真,p且q為假,求實(shí)數(shù)m的取值范圍..

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知p:25x2-10x+1-a2>0(a≥0),q:2x2-3x+1>0,若p是q成立的充分不必要條件,求實(shí)數(shù)a的取值范圍.
(2)已知p:方程x2+mx+1=0有兩不相等的負(fù)實(shí)數(shù)根;q:方程4x2+4(m-2)x+1=0無(wú)實(shí)根,若p∨q為真,p∧q為假,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知P:方程x2+mx+1=0有兩個(gè)不等的實(shí)數(shù)根,Q:方程4x2+4(m-2)x+1=0無(wú)實(shí)根.若P∨Q為真,P∧Q為假,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案