若k的值使得過A(1,1)可以做兩條直線與圓x2+y2+kx-2y-
5
4
k=0相切,則k的取值范圍是( 。
A、k<0
B、k<-4或-1<k<0
C、k<-4
D、k<-4或k>-1
考點(diǎn):直線與圓的位置關(guān)系
專題:計(jì)算題,直線與圓
分析:把圓的方程化為標(biāo)準(zhǔn)方程后,根據(jù)構(gòu)成圓的條件得到等號(hào)右邊的式子大于0,列出關(guān)于k的不等式,求出不等式的解集,然后由過已知點(diǎn)總可以作圓的兩條切線,得到點(diǎn)在圓外,故把點(diǎn)的坐標(biāo)代入圓的方程中得到一個(gè)關(guān)系式,讓其大于0列出關(guān)于k的不等式,求出不等式的解集,綜上,求出兩解集的并集即為實(shí)數(shù)k的取值范圍.
解答: 解:把圓的方程化為標(biāo)準(zhǔn)方程得:(x+
1
2
k)2+(y-1)2=
1
4
k2+
5
4
k+1,
所以
1
4
k2+
5
4
k+1>0,解得:k>-1或k<-4,
又點(diǎn)(1,1)在已知圓的外部,
把點(diǎn)代入圓方程得:1+1+k-2-
5
4
k>0,
解得:k<0,
則實(shí)數(shù)k的取值范圍是(-∞,-4)∪(-1,0).
故選B.
點(diǎn)評(píng):本題考查點(diǎn)與圓的位置關(guān)系,二元二次方程為圓的條件及一元二次不等式的解法.理解過已知點(diǎn)總利用作圓的兩條切線,得到把點(diǎn)坐標(biāo)代入圓方程其值大于0是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

學(xué)校游園活動(dòng)有這樣一個(gè)游戲項(xiàng)目:甲箱子里裝有3個(gè)白球、2個(gè)黑球,乙箱子里裝有1個(gè)白球、2個(gè)黑球,這些球除顏色外完全相同,每次游戲從這兩個(gè)箱子里各隨機(jī)摸出2個(gè)球,若摸出的白球不少于2個(gè),則獲獎(jiǎng).(每次游戲結(jié)束后將球放回原箱)
(Ⅰ)求在1次游戲中獲獎(jiǎng)的概率;
(Ⅱ)求在2次游戲中獲獎(jiǎng)次數(shù)X的分布列及數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實(shí)數(shù)x,y滿足
x+y-1≥0
x≤2
y≤3
,則z=y-x的最小值是( 。
A、1B、5C、-3D、-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(文)Sn=1-2+3-4+5-6+…+(-1)n+1•n,則S100+S200+S301等于( 。
A、1B、-1C、51D、52

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的方程|x2-2x-3|-m+5=0有4個(gè)根,則m的取值范圍為( 。
A、(0,4)
B、(5,9)
C、(0,4]
D、(5,9]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于x的不等式
(x-a)(x-b)
x-c
≥0的解為-1≤x<2或x≥3,則點(diǎn)P(a+b,c)位于(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)滿足f(1-x)=f(1+x),且f(x)在[1,+∞)是增函數(shù),如果不等式f(1-m)<f(m)成立,則實(shí)數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若ABCD為正方形,E是CD的中點(diǎn),則
AB
=
a
,
AD
=
b
,則
AE
=( 。
A、
1
2
a
+
b
B、
1
2
b
+
a
C、
1
2
a
-
b
D、
1
2
b
-
a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x2+a|x-1|(a∈R),則對(duì)不同的實(shí)數(shù)a,函數(shù)f(x)的單調(diào)區(qū)間的個(gè)數(shù)有可能的是( 。
A、1個(gè)或2個(gè)
B、2個(gè)或3個(gè)
C、3個(gè)或4個(gè)
D、2個(gè)或4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案