【題目】設(shè)甲、乙、丙三個乒乓球協(xié)會的分別選派3,1,2名運動員參加某次比賽,甲協(xié)會運動員編號分別為A1 , A2 , A3 , 乙協(xié)會編號為A4 , 丙協(xié)會編號分別為A5 , A6 , 若從這6名運動員中隨機抽取2名參加雙打比賽.
(1)用所給編號列出所有可能抽取的結(jié)果;
(2)求丙協(xié)會至少有一名運動員參加雙打比賽的概率;
(3)求參加雙打比賽的兩名運動員來自同一協(xié)會的概率.
【答案】
(1)解:從這6名運動員中隨機抽取2名參加雙打比賽,
所有可能的結(jié)果為{A1,A2},{A1,A3},{A1,A4},{A1,A5},{A1,A6},
{A2,A3},{A2,A4},{A2,A5},{A2,A6},{A3,A4},{A3,A5},
{A3,A6},{A4,A5},{A4,A6},{A5,A6},共15種
(2)解:∵丙協(xié)會至少有一名運動員參加雙打比賽,
∴編號為A5,A6的兩名運動員至少有一人被抽到,
其結(jié)果為:{A1,A5},{A1,A6},{A2,A5},{A2,A6},{A3,A5},
{A3,A6},{A4,A5},{A4,A6},{A5,A6},共9種,
∴丙協(xié)會至少有一名運動員參加雙打比賽的概率P(A)=
(3)解:兩名運動員來自同一協(xié)會有{A1,A2},{A1,A3},{A2,A3},{A5,A6}共4種
參加雙打比賽的兩名運動員來自同一協(xié)會的概率為
【解析】(1)從這6名運動員中隨機抽取2名參加雙打比賽,利用列舉法能求出所有可能的結(jié)果.(2)由丙協(xié)會至少有一名運動員參加雙打比賽,知編號為A5 , A6的兩名運動員至少有一人被抽到,由此利用列舉法能求出丙協(xié)會至少有一名運動員參加雙打比賽的概率.(3)由列舉法得兩名運動員來自同一協(xié)會有4種,由此能求出參加雙打比賽的兩名運動員來自同一協(xié)會的概率.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2sin(ωx+φ)(ω>0,|φ|< )在一個周期內(nèi)的圖像如圖所示,其中M( ,2),N( ,0).
(1)求函數(shù)f(x)的解析式;
(2)在△ABC中,角A,B,C的對邊分別是a,b,c,且a= ,c=3,f( )= ,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2﹣2x+t,g(x)=x2﹣t(t∈R)
(1)當(dāng)x∈[2,3]時,求函數(shù)f(x)的值域(用t表示)
(2)設(shè)集合A={y|y=f(x),x∈[2,3]},B={y|y=|g(x)|,x∈[2,3]},是否存在正整數(shù)t,使得A∩B=A.若存在,請求出所有可能的t的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,已知動點到定點的距離與到定直線的距離之比為.
(1)求動點的軌跡的方程;
(2)已知為定直線上一點.
①過點作的垂線交軌跡于點(不在軸上),求證:直線與的斜率之積是定值;
②若點的坐標為,過點作動直線交軌跡于不同兩點,線段上的點滿足,求證:點恒在一條定直線上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某景區(qū)修建一棟復(fù)古建筑,其窗戶設(shè)計如圖所示.圓的圓心與矩形對角線的交點重合,且圓與矩形上下兩邊相切(為上切點),與左右兩邊相交(, 為其中兩個交點),圖中陰影部分為不透光區(qū)域,其余部分為透光區(qū)域.已知圓的半徑為1m,且.設(shè),透光區(qū)域的面積為.
(1)求關(guān)于的函數(shù)關(guān)系式,并求出定義域;
(2)根據(jù)設(shè)計要求,透光區(qū)域與矩形窗面的面積比值越大越好.當(dāng)該比值最大時,求邊的長度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A、B、C為三角形ABC的三內(nèi)角,其對應(yīng)邊分別為a,b,c,若有2acosC=2b+c成立.
(1)求A的大小;
(2)若 ,b+c=4,求三角形ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】微信運動和運動手環(huán)的普及,增強了人民運動的積極性,每天一萬步稱為一種健康時尚,某中學(xué)在全校范圍內(nèi)內(nèi)積極倡導(dǎo)和督促師生開展“每天一萬步”活動,經(jīng)過幾個月的扎實落地工作后,學(xué)校想了解全校師生每天一萬步的情況,學(xué)校界定一人一天走路不足千步為不健康生活方式,不少于千步為超健康生活方式者,其他為一般生活方式者,學(xué)校委托數(shù)學(xué)組調(diào)查,數(shù)學(xué)組采用分層抽樣的辦法去估計全校師生的情況,結(jié)合實際及便于分層抽樣,認定全校教師人數(shù)為人,高一學(xué)生人數(shù)為人,高二學(xué)生人數(shù)人,高三學(xué)生人數(shù),從中抽取人作為調(diào)查對象,得到了如圖所示的這人的頻率分布直方圖,這人中有人被學(xué)校界定為不健康生活方式者.
(1)求這次作為抽樣調(diào)查對象的教師人數(shù);
(2)根據(jù)頻率分布直方圖估算全校師生每人一天走路步數(shù)的中位數(shù)(四舍五入精確到整數(shù)步);
(3)校辦公室欲從全校師生中速記抽取人作為“每天一萬步”活動的慰問對象,計劃學(xué)校界定不健康生活方式者鞭策性精神鼓勵元,超健康生活方式者表彰獎勵元,一般生活方式者鼓勵性獎勵元,利用樣本估計總體,將頻率視為概率,求這次校辦公室慰問獎勵金額恰好為元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知{an}是等差數(shù)列,其前n項和為Sn , {bn}是等比數(shù)列,且a1=b1=2,a4+b4=27,S4﹣b4=10.
(1)求數(shù)列{an}與{bn}的通項公式;
(2)記Tn=anb1+an﹣1b2+…+a1bn , n∈N* , 是否存在實數(shù)p,q,r,對于任意n∈N* , 都有Tn=pan+qbn+r,若存在求出p,q,r的值,若不存在說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,直線的參數(shù)方程為(為參數(shù)),在極坐標系(與直角坐標系取相同的長度單位,且以原點為極點,以軸正半軸為極軸)中,圓的方程為.
(1)求圓的直角坐標方程;
(2)設(shè)圓與直線交于點,若點的坐標為,求的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com