已知點A(1,2)在矩陣M=[
aa
1b
](a,b,∈R)對應的變換作用下得到點A′(6,7).
(Ⅰ)求矩陣M;
(Ⅱ)求矩陣M的特征值及屬于每個特征值的一個特征向量.
考點:特征值與特征向量的計算,幾種特殊的矩陣變換
專題:選作題,矩陣和變換
分析:(Ⅰ)利用待定系數(shù)法求矩陣M;
(Ⅱ)先根據(jù)特征值的定義列出特征多項式,令f(λ)=0解方程可得特征值,再由特征值列出方程組即可解得相應的特征向量.
解答: 解:(Ⅰ)由題意,[
aa
1b
]
1
2
=
6
7
,
3a=6
1+2b=7
,∴
a=2
b=3
,
∴M=
22
13
;
(Ⅱ)M的特征多項式為f(λ)=(λ-1)(λ-4),
令f(λ)=0,可求得特征值為λ1=1,λ2=4,
設λ1=1對應的一個特征向量為
α
=
x
y
,
則由λ1
α
=M
α
,得-x-2y=0
可令x=2,則y=-1,
所以矩陣M的一個特征值λ1=1對應的一個特征向量為
α
=
2
-1

同理可得矩陣M的一個特征值λ2=4對應的一個特征向量為
β
=
1
1
點評:本題主要考查了矩陣特征值與特征向量的計算等基礎知識,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

某小組有3名男生和2名女生,從中任選2名同學參加演講比賽.下列各對事件中,為對立事件的是(  )
A、恰有一名男生和恰有2名男生
B、至少一名男生和至少一名女生
C、至少有一名男生和與全是女生
D、至少有一名男生和全是男生

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知平面向量
a
=(λ,-2),
b
=(4,1),若
a
b
,則實數(shù)λ等于( 。
A、-
1
2
B、
1
2
C、-8
D、8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若復數(shù)z滿足z(1+2i)=3-4i(i為虛數(shù)單位),則z的共軛復數(shù)是( 。
A、-1+2iB、-1-2i
C、1+2iD、1-2i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某醫(yī)療研究所為了檢驗某種血清預防感冒的作用,把500名使用血清的人與另外500名未使用血清的人一年中的感冒記錄作比較,提出假設H0:“這種血清不能起到預防感冒的作用”,利用2×2列聯(lián)表計算的K2≈3.918,經(jīng)查對下面的臨界值表,我們( 。
P(K2≥k0 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k0 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828
A、至少有95%的把握認為“這種血清能起到預防感冒的作用”
B、至少有99%的把握認為“這種血清能起到預防感冒的作用”
C、至少有97.5%的把握認為“這種血清能起到預防感冒的作用”
D、沒有充分理由說明“這種血清能起到預防感冒的作用”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=a2x+2ax-1(a>0且a≠1)在[-1,1]上有最大值14.
(1)求a的值;
(2)若a,b,c為不等于1的正數(shù),ax=by=cz,且
1
x
+
1
y
+
1
z
=0,求abc的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

甲乙兩個興趣小組,甲有5人,乙有7人,從這12人中選3人參加比賽,已知在甲組有1人確定參加比賽的條件下,求另外兩人恰好甲乙兩組各1人的概率?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

甲、乙兩臺機床同時生產(chǎn)一種零件,10天中,兩臺機床每天出的次品數(shù)分別是:
第1天 第2天 第3天 第4天 第5天 第6天 第7天 第8天 第9天 第10天
0 1 0 2 2 0 3 1 2 4
2 3 1 1 0 2 1 1 0 1
(1)隨機選擇某一天進行檢查,求甲、乙兩臺機床出的次品數(shù)之和小于3的概率;
(2)分別計算這兩組數(shù)據(jù)的平均數(shù)與方差,并根據(jù)計算結(jié)果比較兩臺機床的性能.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設各項均為正數(shù)的數(shù)列{an}的前n項和為Sn,滿足
a
2
n+1
=4Sn+4n+1,n∈N*
且a2,a5,a14恰好是等比數(shù)列{bn}的前三項.
(Ⅰ)求數(shù)列{an}、{bn}的通項公式;
(Ⅱ)記數(shù)列{bn}的前n項和為Tn,若對任意的n∈N*,(T n+
3
2
)k≥3n-6恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

同步練習冊答案