如圖,圓O的直徑AB=d,P是AB延長線上一點,Bp=a,割線PCD交圓O于點C、D,過點P作AP的垂線,交直線AC于點E,交直線AD于點F.
(Ⅰ)求證:∠PEC=∠PDF;
(Ⅱ)求PE•PF的值.

(Ⅰ)證明:連接BC,∵AB是圓O的直徑,∴∠ACB=∠APE=90°,即P,B,C,E四點共圓,
∴∠PEC=∠CBA.
又A,B,C,D四點共圓,∴∠CBA=PDF,
∴∠PEC=∠PDF;
(Ⅱ)解:∵∠PEC=∠PDF,∴D,C,E,F(xiàn)四點共圓
∴PE•PF=PC•PD=PB•PA=a(a+d).
分析:(Ⅰ)利用AB是圓O的直徑,可得∠ACB=∠APE=90°,從而P、B、C、E四點共圓,又A,B,C,D四點共圓,利用四點共圓的性質(zhì),可得結(jié)論;
(Ⅱ)證明D,C,E,F(xiàn)四點共圓,利用割線定理,即可求得結(jié)論.
點評:本題考查圓的性質(zhì),考查四點共圓的判定,考查割線的性質(zhì),屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,圓O的直徑AB=6,C為圓周上一點,BC=3,過C作圓的切線l,過A作l的垂線AD,垂足為D,則線段CD的長為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,圓O的直徑AB=8,C為圓周上一點,BC=4,過C作圓的切線l,過A作直線l的垂線AD,D為垂足,AD與圓O交于點E,則線段AE的長為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•天門模擬)(1)如圖,圓O的直徑AB=8,C為圓周上一點,BC=4,過點C作圓的切線l,過點A作直線l的垂線AD,D為垂足,AD與圓O交于點E,則線段AE的長為
4
4

(2)在平面直角坐標系下,曲線C1
x=2t+2a
y=-t
(t為參數(shù)),曲線C2
x=2sinθ
y=1+2cosθ
(θ為參數(shù)),若曲線C1、C2有公共點,則實數(shù)a的取值范圍為
[1-
5
,1+
5
]
[1-
5
1+
5
]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•鹽城一模)[A.(選修4-1:幾何證明選講)
如圖,圓O的直徑AB=8,C為圓周上一點,BC=4,過C作圓的切線l,過A作直線l的垂線AD,D為垂足,AD與圓O交于點E,求線段AE的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

考生注意:請在下列三題中任選一題作答,如果多做,則按所做的第一題評閱記分)
A.(幾何證明選做題) 如圖,圓O的直徑AB=10,弦DE⊥AB于點H,HB=2.則DE=
8
8

B.(坐標系與參數(shù)方程選做題)已知直線C1
x=1+tcosα
y=tsinα
(t為參數(shù)),C2
x=cosθ
y=sinθ
(θ為參數(shù)),當α=
π
3
時,C1與C2的交點坐標為
(1,0);(
1
2
,-
3
2
)
(1,0);(
1
2
,-
3
2
)

C.(不等式選做題)若不等式|2a-1|≤|x+
1
x
|
對一切非零實數(shù)a恒成立,則實數(shù)a的取值范圍
[-
1
2
,
3
2
]
[-
1
2
3
2
]

查看答案和解析>>

同步練習冊答案