某畢業(yè)生參加人才招聘會(huì),分別向甲、乙、丙三個(gè)公司投遞了個(gè)人簡(jiǎn)歷,假定該畢業(yè)生得到甲公司面試的概率為
2
3
,得到乙、丙公司面試的概率均為P,且三個(gè)公司是否讓其面試是相互獨(dú)立的.記X為該畢業(yè)生得到面試的公司個(gè)數(shù).若P(X=0)=
1
12
,則隨機(jī)變量X的數(shù)學(xué)期望E(X)=
 
分析:根據(jù)該畢業(yè)生得到面試的機(jī)會(huì)為0時(shí)的概率,做出得到乙、丙公司面試的概率,根據(jù)題意得到X的可能取值,結(jié)合變量對(duì)應(yīng)的事件寫(xiě)出概率和做出期望.
解答:解:由題意知X為該畢業(yè)生得到面試的公司個(gè)數(shù),則X的可能取值是0,1,2,3,
∵P(X=0)=
1
12
,
1
3
(1-p)2 =
1
12

∴p=
1
2
,
P(X=1)=
2
3
×
1
2
×
1
2
+
1
3
×
1
2
×
1
2
+
1
3
×
1
2
×
1
2
=
4
12

P(X=2)=
2
3
×
1
2
×
1
2
+
2
3
×
1
2
×
1
2
+
1
3
×
1
2
×
1
2
=
5
12

P(X=3)=1-
1
12
-
4
12
-
5
12
=
2
12
,
∴E(X)=
4
12
+2×
5
12
+3×
2
12
=
5
3

故答案為:
5
3
點(diǎn)評(píng):本題考查離散型隨機(jī)變量的分布列和離散型隨機(jī)變量的期望,考查生活中常見(jiàn)的一種題目背景,是一個(gè)基礎(chǔ)題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2013屆浙江省、蘭溪一中高二下期中理科數(shù)學(xué)試卷(解析版) 題型:填空題

某畢業(yè)生參加人才招聘會(huì),分別向甲、乙兩個(gè)公司投遞了個(gè)人簡(jiǎn)歷,假定該畢業(yè)生得到甲公司面試的概率為,得到乙公司面試的概率為,且兩個(gè)公司是否讓其面試是相互獨(dú)立的。記X為該畢業(yè)生得到面試得公司個(gè)數(shù)。若,則隨機(jī)變量X的數(shù)學(xué)期望        

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年甘肅省高三百題集理科數(shù)學(xué)試卷(解析版)(三) 題型:填空題

某畢業(yè)生參加人才招聘會(huì),分別向甲、乙、丙三個(gè)公司投遞了個(gè)人簡(jiǎn)歷.假定該畢業(yè)生得到甲公司面試的概率為,得到乙、丙兩公司面試的概率均為p,且三個(gè)公司是否讓其面試是相互獨(dú)立的.記X為該畢業(yè)生得到面試的公司個(gè)數(shù).若P(X=0)=,則隨機(jī)變量X的數(shù)學(xué)期望E(X)=____

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年高考試題數(shù)學(xué)理(浙江卷)解析版 題型:填空題

 某畢業(yè)生參加人才招聘會(huì),分別向甲、乙、丙三個(gè)公司投遞了個(gè)人簡(jiǎn)歷,假定該畢業(yè)生得到甲公司面試的概率為,得到乙公司面試的概率為,且三個(gè)公司是否讓其面試是相互獨(dú)立的。記X為該畢業(yè)生得到面試得公司個(gè)數(shù)。若,則隨機(jī)變量X的數(shù)學(xué)期望    

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:浙江 題型:填空題

某畢業(yè)生參加人才招聘會(huì),分別向甲、乙、丙三個(gè)公司投遞了個(gè)人簡(jiǎn)歷,假定該畢業(yè)生得到甲公司面試的概率為
2
3
,得到乙、丙公司面試的概率均為P,且三個(gè)公司是否讓其面試是相互獨(dú)立的.記X為該畢業(yè)生得到面試的公司個(gè)數(shù).若P(X=0)=
1
12
,則隨機(jī)變量X的數(shù)學(xué)期望E(X)=______.

查看答案和解析>>

同步練習(xí)冊(cè)答案