底面直徑為10的圓柱被與底面成60°的平面所截,截口是一個橢圓,該橢圓的長軸長 ,短軸長 ,離心率為 .

 

 

20,10,

【解析】

試題分析:根據(jù)平面與圓柱面的截線及橢圓的性質(zhì),可得圓柱的底面直徑為10,截面與底面成60°,根據(jù)截面所得橢圓長軸、短軸與圓柱直徑的關(guān)系,我們易求出橢圓的長軸長和短軸長,進而得到橢圓的離心率.

【解析】
∵設(shè)圓柱的底面直徑為10,截面與底面成60°

∴橢圓的短軸長2b=10,即b=5,

橢圓的長軸長2a==20,即a=10,

根據(jù):c==5,

則橢圓的離心率e==,

故答案為:20,10,

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:[同步]2014年新人教A版選修4-2 1.3線性變換的基本性質(zhì)練習卷(解析版) 題型:選擇題

直線y=x+1在矩陣作用下變換得到的圖形與x2+y2=1的位置關(guān)系是( )

A.相交 B.相離 C.相切 D.無法判定

 

查看答案和解析>>

科目:高中數(shù)學 來源:[同步]2014年新人教A版選修4-2 1.1線性變換與二階矩陣練習卷(解析版) 題型:填空題

(2013•石家莊二模)將函數(shù)y=﹣x2+x(e∈[0,1])的圖象繞點M(1,0)順時針旋轉(zhuǎn)θ角 (0<θ<)得到曲線C,若曲線C仍是一個函數(shù)的圖象,則角θ的最大值為 .

 

查看答案和解析>>

科目:高中數(shù)學 來源:[同步]2014年新人教A版選修4-2 1.1線性變換與二階矩陣練習卷(解析版) 題型:選擇題

將直線y=x繞原點逆時針旋轉(zhuǎn)60°,所得到的直線為( )

A.x=0 B.y=0 C.y=x D.y=﹣x

 

查看答案和解析>>

科目:高中數(shù)學 來源:[同步]2014年新人教A版選修4-1 3.3平面與圓錐面的截線練習卷(解析版) 題型:填空題

(2007•茂名二模)已知圓柱半徑是2,則是一個與圓柱的軸成45°角的平面截圓柱面所得截痕曲線的離心率是 .

 

查看答案和解析>>

科目:高中數(shù)學 來源:[同步]2014年新人教A版選修4-1 3.2平面與圓柱面的截線練習卷(解析版) 題型:填空題

(2003•北京)如圖,已知底面半徑為r的圓柱被一個平面所截,剩下部分母線長的最大值為a,最小值為b,那么圓柱被截后剩下部分的體積是 .

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:[同步]2014年新人教A版選修4-1 3.1平行射影練習卷(解析版) 題型:填空題

給出下列四個命題:

①設(shè)x1,x2∈R,則x1>1且x2>1的充要條件是x1+x2>2且x1x2>1;

②任意的銳角三角形ABC中,有sinA>cosB成立;

③平面上n個圓最多將平面分成2n2﹣4n+4個部分;

④空間中直角在一個平面上的正投影可以是鈍角.

其中真命題的序號是 (要求寫出所有真命題的序號).

 

查看答案和解析>>

科目:高中數(shù)學 來源:[同步]2014年新人教A版選修4-1 2.4弦切角的性質(zhì)練習卷(解析版) 題型:選擇題

如圖,經(jīng)過⊙O上的點 A的切線和弦 BC的延長線相交于點 P,若∠CAP=40°,∠ACP=100°,則

∠BAC所對的弧的度數(shù)為( )

A.40° B.100° C.120° D.30°

 

查看答案和解析>>

科目:高中數(shù)學 來源:[同步]2014年北師大版選修1-2 3.3綜合法與分析法練習卷(解析版) 題型:選擇題

“π是無限不循環(huán)小數(shù),所以π是無理數(shù)”,以上推理( )

A.缺少小前提,小前提是無理數(shù)都是無限不循環(huán)小數(shù)

B.缺少大前提,大前提是無理數(shù)都是無限不循環(huán)小數(shù)

C.缺少小前提,小前提是無限不循環(huán)小數(shù)都是無理數(shù)

D.缺少大前提,大前提是無限不循環(huán)小數(shù)都是無理數(shù)

 

查看答案和解析>>

同步練習冊答案