四面體ABCD的四個(gè)頂點(diǎn)都在球O的表面上,AB⊥平面BCD,△BCD是邊長為3的等邊三角形.若AB=2,則球O的表面積為( 。
A、4πB、12π
C、16πD、32π
考點(diǎn):球的體積和表面積
專題:計(jì)算題,空間位置關(guān)系與距離
分析:取CD的中點(diǎn)E,連結(jié)AE,BE,作出外接球的球心,求出半徑,即可求出表面積.
解答: 解:取CD的中點(diǎn)E,連結(jié)AE,BE,
∵在四面體ABCD中,AB⊥平面BCD,△BCD是邊長為3的等邊三角形.
∴Rt△ABC≌Rt△ABD,△ACD是等腰三角形,
△BCD的中心為G,作OG∥AB交AB的中垂線HO于O,O為外接球的中心,
BE=
3
3
2
,BG=
3
,
∴R=2.
四面體ABCD外接球的表面積為:4πR2=16π.
故選:C.
點(diǎn)評:本題考查球的內(nèi)接體知識,考查空間想象能力,確定球的切線與半徑是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

四邊形ABCD為直角梯形,AB∥CD,AB=4,BC=CD=2,AB⊥BC,現(xiàn)將該梯形繞AB旋轉(zhuǎn)一周形成封閉幾何體,求該幾何體的表面積及體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2
3
sin(x+
π
4
)cos(x+
π
4
)-sin(2x-π).
(1)求f(x)的單調(diào)增區(qū)間;
(2)若將函數(shù)f(x)的圖象向右平移
π
3
個(gè)單位,得到函數(shù)g(x)的圖象,求函數(shù)g(x)在區(qū)間[0,
π
2
]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a=
3
-
2
,b=
6
-
5
,c=
7
-
6
,則a、b、c的大小順序是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={x|log3x≤1},N={x|x2-2x<0},則( 。
A、M=NB、M∩N=∅
C、M∩N=RD、N⊆M

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
b
滿足|
a
|=1,|
b
|=2,(
a
+
b
)⊥
a
,則向量
a
與向量
b
的夾角為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正方體ABCD-A1B1C1D1中,E、F分別是AA1、AB的中點(diǎn),則EF與對角面BDD1B1所成角的度數(shù)是( 。
A、30°B、45°
C、60°D、150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將函數(shù)y=sinx+cosx(x∈R)的圖象向左平移m(m>0)個(gè)單位長度后,得到圖象關(guān)于y軸對稱,則m的最小值為( 。
A、
π
4
B、
π
3
C、
π
2
D、π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sinx(sinx+cosx).
(1)求函數(shù)f(x)的最大值及相應(yīng)的x值;
(2)試敘述:函數(shù)y=f(x)的圖象可由函數(shù)y=sinx的圖象經(jīng)過怎樣的變換而得到.

查看答案和解析>>

同步練習(xí)冊答案