二次函數(shù)f(x)滿足f(x+1)-f(x)=2x,且f(0)=1.
(1)求f(x)的解析式;
(2)在區(qū)間[-1,1]上,y=f(x)的圖象恒在y=2x+m的圖象上方,求實數(shù)m的取值范圍
(1)f(x)=x2-x+1,(2)
解析試題分析:(1)求二次函數(shù)解析式,一般方法為待定系數(shù)法.二次函數(shù)解析式有三種設法,本題設一般式f(x)=ax2+bx+1,再利用等式恒成立,求出項的系數(shù).由a(x+1)2+b(x+1)-ax2-bx=2x得2ax+a+b=2x,所以.(2)恒成立問題一般轉化為最值問題.先構造不等式,再變量分離,這樣就轉化為求函數(shù)的最小值問題.
試題解析:(1)設f(x)=ax2+bx+1
a(x+1)2+b(x+1)-ax2-bx=2x
2ax+a+b=2x
f(x)=x2-x+1
(2)
考點:二次函數(shù)解析式,二次函數(shù)最值,不等式恒成立
科目:高中數(shù)學 來源: 題型:解答題
已知的三內(nèi)角分別為,向量
,記函數(shù).
(1)若,求的面積;
(2)若關于的方程有兩個不同的實數(shù)解,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設是實數(shù),函數(shù)().
(1)求證:函數(shù)不是奇函數(shù);
(2)當時,求滿足的的取值范圍;
(3)求函數(shù)的值域(用表示).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)
(1)求函數(shù)的單調區(qū)間.
(2)若方程有4個不同的實根,求的范圍?
(3)是否存在正數(shù),使得關于的方程有兩個不相等的實根?如果存在,求b滿足的條件,如果不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)f(x)=x3(a>0且a≠1).
(1)求函數(shù)f(x)的定義域;
(2)討論函數(shù)f(x)的奇偶性;
(3)求a的取值范圍,使f(x)>0在定義域上恒成立.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com