.(本小題滿(mǎn)分10分)

記不等式組表示的平面區(qū)域?yàn)?i>M.

(Ⅰ)畫(huà)出平面區(qū)域M,并求平面區(qū)域M的面積;

(Ⅱ)若點(diǎn)為平面區(qū)域M中任意一點(diǎn),

求直線(xiàn)的圖象經(jīng)過(guò)一、二、四象限的概率.

 

 

 

 

【答案】

解:(Ⅰ)如圖,△ABC的內(nèi)部及其各條邊就表示平面區(qū)域,其中、、,                     (3分)

∴平面區(qū)域M的面積為         (5分)                          

(Ⅱ)要使直線(xiàn)的圖象經(jīng)過(guò)一、二、四象限,則,                          (6分)

又點(diǎn)的區(qū)域?yàn)?i>M,故使直線(xiàn)的圖象經(jīng)過(guò)一、二、四象限的點(diǎn)的區(qū)域?yàn)榈诙笙薜年幱安糠?nbsp;                                (8分)

故所求的概率為                                     (10分)

 

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(選做題)本題包括A、B、C、D四小題,請(qǐng)選定其中兩題,并在答題卡指定區(qū)域內(nèi)作答,若多做,則按作答的前兩題評(píng)分,解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.
A.[選修4-1:幾何證明選講]
已知△ABC中,AB=AC,D是△ABC外接圓劣弧AC上的點(diǎn)(不與點(diǎn)A,C重合),延長(zhǎng)BD至點(diǎn)E.
求證:AD的延長(zhǎng)線(xiàn)平分∠CDE
B.[選修4-2:矩陣與變換]
已知矩陣A=
12
-14

(1)求A的逆矩陣A-1;
(2)求A的特征值和特征向量.
C.[選修4-4:坐標(biāo)系與參數(shù)方程]
已知曲線(xiàn)C的極坐標(biāo)方程為ρ=4sinθ,以極點(diǎn)為原點(diǎn),極軸為x軸的非負(fù)半軸建立平面直角坐標(biāo)系,直線(xiàn)l的參數(shù)方程為
x=
1
2
t
y=
3
2
t+1
(t為參數(shù)),求直線(xiàn)l被曲線(xiàn)C截得的線(xiàn)段長(zhǎng)度.
D.[選修4-5,不等式選講](本小題滿(mǎn)分10分)
設(shè)a,b,c均為正實(shí)數(shù),求證:
1
2a
+
1
2b
+
1
2c
1
b+c
+
1
c+a
+
1
a+b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

本題包括(1)、(2)、(3)、(4)四小題,請(qǐng)選定其中兩題,并在答題卡指定區(qū)域內(nèi)答,
若多做,則按作答的前兩題評(píng)分.解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.
(1)、選修4-1:幾何證明選講
如圖,∠PAQ是直角,圓O與AP相切于點(diǎn)T,與AQ相交于兩點(diǎn)B,C.求證:BT平分∠OBA
(2)選修4-2:矩陣與變換(本小題滿(mǎn)分10分)
若點(diǎn)A(2,2)在矩陣M=
cosα-sinα
sinαcosα
對(duì)應(yīng)變換的作用下得到的點(diǎn)為B(-2,2),求矩陣M的逆矩陣
(3)選修4-2:矩陣與變換(本小題滿(mǎn)分10分)
在極坐標(biāo)系中,A為曲線(xiàn)ρ2+2ρcosθ-3=0上的動(dòng)點(diǎn),B為直線(xiàn)ρcosθ+ρsinθ-7=0上的動(dòng)點(diǎn),求AB的最小值.
(4)選修4-5:不等式選講(本小題滿(mǎn)分10分)
已知a1,a2…an都是正數(shù),且a1•a2…an=1,求證:(2+a1)(2+a2)…(2+an)≥3n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

必做題:(本小題滿(mǎn)分10分,請(qǐng)?jiān)诖痤}指定區(qū)域內(nèi)作答,解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟)
已知an(n∈N*)是二項(xiàng)式(2+x)n的展開(kāi)式中x的一次項(xiàng)的系數(shù).
(Ⅰ)求an
(Ⅱ)是否存在等差數(shù)列{bn},使an=b1cn1+b2cn2+b3cn3+…+bncnn對(duì)一切正整數(shù)n都成立?并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿(mǎn)分10分)數(shù)學(xué)的美是令人驚異的!如三位數(shù)153,它滿(mǎn)足153=13+53+33,即這個(gè)整數(shù)等于它各位上的數(shù)字的立方的和,我們稱(chēng)這樣的數(shù)為“水仙花數(shù)”.請(qǐng)您設(shè)計(jì)一個(gè)算法,找出大于100,小于1000的所有“水仙花數(shù)”.
(1)用自然語(yǔ)言寫(xiě)出算法;
(2)畫(huà)出流程圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(選修4-2:矩陣與變換)(本小題滿(mǎn)分10分)
求矩陣A=
32
21
的逆矩陣.

查看答案和解析>>

同步練習(xí)冊(cè)答案