△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,b=5,c=7,a=3
2

(1)求cosA的大小
(2)△ABC面積的大。
考點:余弦定理,正弦定理
專題:解三角形
分析:(1)利用余弦定理即可得出.
(2)利用同角三角函數(shù)基本關(guān)系式、三角形的面積計算公式即可得出.
解答: 解:(1)由余弦定理可得:cosA=
b2+c2-a2
2bc
=
52+72-(3
2
)2
2×5×7
=
4
5

(2)∵A∈(0,π),∴sinA=
1-cos2A
=
3
5

∴S△ABC=
1
2
bcsinA
=
1
2
×5×7×
3
5
=
21
2
點評:本題考查了余弦定理、同角三角函數(shù)基本關(guān)系式、三角形的面積計算公式,考查了計算能力,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知△ABC的兩個頂點B,C在平面α內(nèi),若三角形的三條高線的交點H在平面α內(nèi),則三角形的頂點A
 
(填“是”或“否”)在平面α上.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,若a=10,B=45°,b=7,則△ABC( 。
A、無解B、僅有一解
C、僅有兩解D、無法判斷

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

a1=4,an+1=2an+2n+1,令bn=
an
2n

(1)求證{bn}是等差數(shù)列;
(2)求{an}的通項公式,并其求的前項和Sn的通項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對定義域為D的函數(shù),若存在距離為d的兩條平行直線l1:y=kx+m1和l2:y=kx+m2,使得當x∈D時,kx+m1≤f(x)≤kx+m2恒成立,則稱函數(shù)f(x)在x∈D有一個寬度為d的通道.有下列函數(shù):
①f(x)=
1
x
;②f(x)=sinx;③f(x)=
x2-1
;④f(x)=x3+1.
其中在[1,+∞)上通道寬度為(x2-
1
x
)5
的函數(shù)是( 。
A、①③B、②③C、②④D、①④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)等比數(shù)列{an}的前n項和Sn=2•3n-2+a,等差數(shù)列{bn}的前n項和Tn=2n2-n+b-1,則a+b=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

x2
a2
+
y2
b2
=1與x2+y2=(
b
2
+c)2總有四個交點,求離心率e的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在直角坐標系xOy中,已知點A(1,1),B(2,3),C(3,2),點P(x,y)在△ABC三邊圍成的
區(qū)域(含邊界)上,若
PA
+
PB
+
PC
=
0
,求|
OP
|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在R上的奇函數(shù)f(x)滿足f(x+1)=f(x),當0<x<
1
2
時,f(x)=4x,則f(-
5
4
)=( 。
A、-
2
B、-
2
2
C、-1
D、
2
2

查看答案和解析>>

同步練習冊答案