1.在平面直角坐標(biāo)系xOy中,向量$\overrightarrow{OA}$=(1,2),$\overrightarrow{OB}$=(2,m),若O,A,B三點(diǎn)能構(gòu)成三角形,則(  )
A.m=4B.m≠4C.m≠-1D.m∈R

分析 若O,A,B三點(diǎn)能構(gòu)成三角形則等價(jià)為O,A,B三點(diǎn)能不共線,先求出三點(diǎn)共線的等價(jià)條件進(jìn)行求解即可.

解答 解:若O,A,B三點(diǎn)能構(gòu)成三角形,
則O,A,B三點(diǎn)能不共線,
若O,A,B三點(diǎn)共線,則$\overrightarrow{OA}$∥$\overrightarrow{OB}$,
則$\frac{2}{1}=\frac{m}{2}$,即m=4,
即當(dāng)m≠4時(shí),O,A,B三點(diǎn)能構(gòu)成三角形,
故選:B.

點(diǎn)評(píng) 本題主要考查向量共線的應(yīng)用,根據(jù)條件建立方程關(guān)系是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知正四棱錐S-ABCD側(cè)棱長(zhǎng)為4,∠ASB=30°,過(guò)點(diǎn)A作截面與側(cè)棱SB、SC、SD分別交于E、F、G,則截面AEFG周長(zhǎng)的最小值是4$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.若點(diǎn)P在線段P1P2的延長(zhǎng)線上,P1(4,-3),P2(-2,6),且|$\overrightarrow{{P}_{1}P}$|=4|$\overrightarrow{P{P}_{2}}$|,則點(diǎn)P的坐標(biāo)為(-4,9).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.若a=50.2,b=logπ3,c=log50.2,則( 。
A.b>c>aB.b>a>cC.a>b>cD.c>a>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知某品牌手機(jī)公司生產(chǎn)某款手機(jī)的年固定成本為40萬(wàn)美元,每生產(chǎn)1萬(wàn)部還需另投入16萬(wàn)美元.設(shè)公司一年內(nèi)共生產(chǎn)該款手機(jī)x萬(wàn)部并全部銷售完,每萬(wàn)部的銷售收入為R(x)萬(wàn)美元,且R(x)=$\left\{{\begin{array}{l}{400-6x,0<x≤40}\\{\frac{8000}{x}-\frac{57600}{x^2},x>40}\end{array}}\right.$.
(Ⅰ)寫(xiě)出年利潤(rùn)f(x)(萬(wàn)美元)關(guān)于年產(chǎn)量x(萬(wàn)部)的函數(shù)解析式;
(Ⅱ)當(dāng)年產(chǎn)量為多少萬(wàn)部時(shí),公司在該款手機(jī)的生產(chǎn)中所獲得的利潤(rùn)最大?并求出最大利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知α,β是銳角,tanα,tanβ是方程x2-5x+6=0的兩根,則α+β的值為$\frac{3π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.定義在R上的函數(shù)f(x)既是偶函數(shù)又是周期函數(shù),若f(x)的最小正周期是π,且當(dāng)x∈(0,$\frac{π}{2}$),f(x)=sinx,則f($\frac{800π}{3}$)=(  )
A.$\frac{\sqrt{3}}{2}$B.-$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖(1)所示,在直角梯形ABCP中,BC∥AP,AB⊥BC,CD⊥AP,AD=DC=PD=1,E、F、G分別為線段PC、PD、BC的中點(diǎn),現(xiàn)將△PDC折起,使平面PDC⊥平面ABCD,如圖(2).
(Ⅰ)求證:AP∥平面EFG;
(Ⅱ)求證:平面PAD⊥平面EFG;
(Ⅲ)求三棱錐C-EFG的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.定義運(yùn)算|$\begin{array}{l}a&c\\ b&d\end{array}}$|=ad-bc,則|$\begin{array}{l}i&2\\ 1&i\end{array}}$|(i是虛數(shù)單位)的值為-3.

查看答案和解析>>

同步練習(xí)冊(cè)答案