19.已知圓C的方程為x2+y2=4.
(1)求過點(diǎn)P(1,2)且與圓C相切的直線l的方程;
(2)直線l過點(diǎn)P(1,2),且與圓C交于A、B兩點(diǎn),若|AB|=2$\sqrt{3}$,求直線l的方程;
(3)圓C上有一動(dòng)點(diǎn)M(x0,y0),$\overrightarrow{ON}$=(0,y0),若向量$\overrightarrow{OQ}$=$\overrightarrow{OM}$+$\overrightarrow{ON}$,求動(dòng)點(diǎn)Q的軌跡方程,并說明此軌跡是什么曲線.

分析 (1)顯然直線l的斜率存在,設(shè)切線方程為y-2=k(x-1),利用圓心到直線的距離等于半徑,即可求過點(diǎn)P(1,2)且與圓C相切的直線l的方程;
(2)分類討論:①當(dāng)直線l垂直于x軸時(shí);②若直線l不垂直于x軸.對于②,設(shè)其方程為y-2=k(x-1),結(jié)合直線與圓的位置關(guān)系利用弦長公式即可求得k值,從而解決問題.
(3)設(shè)點(diǎn)M的坐標(biāo)為(x0,y0)(y0≠0),Q點(diǎn)坐標(biāo)為(x,y),利用向量的坐標(biāo)運(yùn)算表示出M的坐標(biāo),再利用M點(diǎn)在圓上其坐標(biāo)適合方程即可求得動(dòng)點(diǎn)Q的軌跡方程,最后利用方程的形式進(jìn)行判斷是什么曲線即可.

解答 解:(1)顯然直線l的斜率存在,設(shè)切線方程為y-2=k(x-1),
則由$\frac{|2-k|}{\sqrt{{k}^{2}+1}}$=2,得k1=0,k2=-$\frac{4}{3}$,從而所求的切線方程為y=2和4x+3y-10=0.
(2)當(dāng)直線l垂直于x軸時(shí),此時(shí)直線方程為x=1,l與圓的兩個(gè)交點(diǎn)坐標(biāo)為(1,$\sqrt{3}$)和(1,-$\sqrt{3}$),這兩點(diǎn)的距離為2$\sqrt{3}$,滿足題意;當(dāng)直線l不垂直于x軸時(shí),設(shè)其方程為y-2=k(x-1),
即kx-y-k+2=0,設(shè)圓心到此直線的距離為d(d>0),則2$\sqrt{3}$=2$\sqrt{4-ouesxci^{2}}$,
得d=1,從而1=$\frac{|2-k|}{\sqrt{{k}^{2}+1}}$,得k=$\frac{3}{4}$,此時(shí)直線方程為3x-4y+5=0,
綜上所述,所求直線方程為3x-4y+5=0或x=1.
(3)設(shè)Q點(diǎn)的坐標(biāo)為(x,y),M點(diǎn)坐標(biāo)是(x0,y0),$\overline{ON}$=(0,y0),
∵$\overrightarrow{OQ}$=$\overrightarrow{OM}$+$\overrightarrow{ON}$,∴(x,y)=(x0,2y0)⇒x=x0,y=2y0
∵x02+y02=4,∴x2+$\frac{{y}^{2}}{4}$=4,即$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{16}=1$.
∴Q點(diǎn)的軌跡方程是$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{16}=1$,軌跡是一個(gè)焦點(diǎn)在y軸上的橢圓.

點(diǎn)評 本小題主要考查直線的一般式方程、直線和圓的方程的應(yīng)用、軌跡方程的解法等基礎(chǔ)知識,考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想.屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)f(x)=x3+bx2+cx+d(b,c,d為常數(shù)),當(dāng)x∈(0,1)時(shí)取得極大值,當(dāng)x∈(1,2)時(shí)取極小值,則(b+$\frac{1}{2}$)2+(c-3)2的取值范圍是(5,25).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=$\frac{a{e}^{x}}{x}$+x.
(Ⅰ)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線經(jīng)過點(diǎn)(0,1),求實(shí)數(shù)a的值.
(Ⅱ)求證:當(dāng)a<0時(shí),函數(shù)f(x)至多有一個(gè)極值點(diǎn).
(Ⅲ)是否存在實(shí)數(shù)a,使得函數(shù)f(x)在定義域上的極小值大于極大值?若存在,求出a的取值范圍,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=$\frac{4}{3}$x3-2x2+ax+b的圖象在點(diǎn)P(0,f(0))處的切線方程為y=2x+1.
(I)求實(shí)數(shù)a、b的值;
(Ⅱ)設(shè)g(x)=f(x)+$\frac{m}{2x-1}$是[1,+∞)上的增函數(shù),
(i)求實(shí)數(shù)m的最大值;
(ii)當(dāng)m取最大值時(shí),是否存在點(diǎn)Q,使得過點(diǎn)Q的直線能與曲線y=g(x)圍成兩個(gè)封閉圖形,則這兩個(gè)封閉圖形的面積總相等?若存在,求出點(diǎn)Q的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)集合A={3,x2},B={x,y},若A∩B={2},則y的值為(  )
A.1B.2C.4D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.從一個(gè)裝有6個(gè)彩色球(3紅,2黃,1藍(lán))的盒子中隨機(jī)地取出2個(gè)球,則兩球顏色相同的概率是$\frac{4}{15}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知Sn為等差數(shù)列{an}的前n項(xiàng)的和,S1>0,且S4>S6,則S10為正數(shù).(填“正數(shù)”、“負(fù)數(shù)”或“零”)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)函數(shù)f(x)=ax2+bx+c(a,b,c∈R且a>0),則“f(f(-$\frac{2a}$))<0”是“f(x)與f(f(x))都恰有兩個(gè)零點(diǎn)”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.函數(shù)f(x)=(x+a)lnx,f′(1)=0,
(1)求f(x)的解析式;
(2)求y=f(x)在(e,f(e))處的切線.

查看答案和解析>>

同步練習(xí)冊答案