連接橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的兩個(gè)短軸的頂點(diǎn)和一個(gè)焦點(diǎn)組成一個(gè)直角三角形,橢圓相鄰兩個(gè)頂點(diǎn)的距離為3,求a,b的值.
分析:根據(jù)橢圓方程為
x2
a2
+
y2
b2
=1
,由題意得到a、b、c之間的關(guān)系求出其a,b,c的值即可.
解答:解:∵橢圓方程為
x2
a2
+
y2
b2
=1
,
由題意知
b=c
a 2+b 2=9
b 2=a 2-c 2

解得a=
3
,b=
6
點(diǎn)評(píng):解決此類(lèi)問(wèn)題的關(guān)鍵是熟練掌握橢圓的標(biāo)準(zhǔn)方程,以及a、b、c之間的關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知直線(xiàn)L:x=my+1過(guò)橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的右焦點(diǎn)F,且交橢圓C于A,B兩點(diǎn),點(diǎn)A,F(xiàn),B在直線(xiàn)G:x=a2上的射影依次為點(diǎn)D,K,E,
(1)已知拋物線(xiàn)x2=4
3
y
的焦點(diǎn)為橢圓C的上頂點(diǎn).
①求橢圓C的方程;
②若直線(xiàn)L交y軸于點(diǎn)M,且
MA
=λ1
AF
MB
=λ2
BF
,當(dāng)m變化時(shí),求λ12的值;
(2)連接AE,BD,試探索當(dāng)m變化時(shí),直線(xiàn)AE、BD是否相交于一定點(diǎn)N?若交于定點(diǎn)N,請(qǐng)求出N點(diǎn)的坐標(biāo)并給予證明;否則說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知橢圓
x2
a2
+
y2
b2
=1 (a>b>0)
的長(zhǎng)軸為AB,過(guò)點(diǎn)B的直線(xiàn)l與x軸垂直.直線(xiàn)(2-k)x-(1+2k)y+(1+2k)=0(k∈R)所經(jīng)過(guò)的定點(diǎn)恰好是橢圓的一個(gè)頂點(diǎn),且橢圓的離心率e=
3
2

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)P是橢圓上異于A、B的任意一點(diǎn),PH⊥x軸,H為垂足,延長(zhǎng)HP到點(diǎn)Q使得HP=PQ,連接AQ延長(zhǎng)交直線(xiàn)l于點(diǎn)M,N為MB的中點(diǎn).試判斷直線(xiàn)QN與以AB為直徑的圓O的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,以橢圓
x2
a2
+
y2
b2
=1 (a>b>0)
的中心O為圓心,分別以a和b為半徑作大圓和小圓.過(guò)橢圓右焦點(diǎn)F(c,0)(c>b)作垂直于x軸的直線(xiàn)交大圓于第一象限內(nèi)的點(diǎn)A.連接OA交小圓于點(diǎn)B.設(shè)直線(xiàn)BF是小圓的切線(xiàn).
(1)求證c2=ab,并求直線(xiàn)BF與y軸的交點(diǎn)M的坐標(biāo);
(2)設(shè)直線(xiàn)BF交橢圓于P、Q兩點(diǎn),求證
OP
OQ
=
1
2
b2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線(xiàn)l:mx-2y+2m=0(m∈R)和橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0),橢圓C的離心率為
2
2
,連接橢圓的四個(gè)頂點(diǎn)形成四邊形的面積為2
2

(I)求橢圓C的方程;
(II)設(shè)直線(xiàn)l經(jīng)過(guò)的定點(diǎn)為Q,過(guò)點(diǎn)Q作斜率為k的直線(xiàn)l′與橢圓C有兩個(gè)不同的交點(diǎn),求實(shí)數(shù)k的取值范圍;
(Ⅲ)設(shè)直線(xiàn)l與y軸的交點(diǎn)為P,M為橢圓C上的動(dòng)點(diǎn),線(xiàn)段PM長(zhǎng)度的最大值為f(m),求f(m)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知直線(xiàn)l:mx-2y+2m=0(m∈R)和橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0),橢圓C的離心率為
2
2
,連接橢圓的四個(gè)頂點(diǎn)形成四邊形的面積為2
2

(I)求橢圓C的方程;
(II)設(shè)直線(xiàn)l經(jīng)過(guò)的定點(diǎn)為Q,過(guò)點(diǎn)Q作斜率為k的直線(xiàn)l′與橢圓C有兩個(gè)不同的交點(diǎn),求實(shí)數(shù)k的取值范圍;
(Ⅲ)設(shè)直線(xiàn)l與y軸的交點(diǎn)為P,M為橢圓C上的動(dòng)點(diǎn),線(xiàn)段PM長(zhǎng)度的最大值為f(m),求f(m)的表達(dá)式.

查看答案和解析>>

同步練習(xí)冊(cè)答案