假設(shè)每天從甲地去乙地的旅客人數(shù)X是服從正態(tài)分布N(800,502)的隨機(jī)變量.記一天中從甲地去乙地的旅客人數(shù)不超過900的概率為p
(Ⅰ)求p的值;
(參考數(shù)據(jù):若X~N(μ,σ2),有P(μ-σ<X≤μ+σ)=0.6826,P(μ-2σ<X≤μ+2σ)=0.9544,P(μ-3σ<X≤μ+3σ)=0.9974.)
(Ⅱ)某客運(yùn)公司用A,B兩種型號的車輛承擔(dān)甲、乙兩地間的長途客運(yùn)業(yè)務(wù),每車每天往返一次,A,B兩種車輛的載客量分別為36人和60人,從甲地去乙地的營運(yùn)成本分別為1600元/輛和2400元/輛.公司擬組建一個(gè)不超過21輛車的客運(yùn)車隊(duì),并要求B型車不多于A型車7輛.若每天要以不小于p的概率運(yùn)完從甲地去乙地的旅客,且使公司從甲地去乙地的營運(yùn)成本最小,那么應(yīng)配備A型車、B型車各多少輛?
【答案】分析:(I)變量服從正態(tài)分布N(800,502),即服從均值為800,標(biāo)準(zhǔn)差為50的正態(tài)分布,適合700<X≤900范圍內(nèi)取值即在(μ-2σ,μ+2σ)內(nèi)取值,其概率為:95.44%,從而由正態(tài)分布的對稱性得出不超過900的概率為p
(II)設(shè)每天應(yīng)派出A型x輛、B型車y輛,根據(jù)條件列出不等式組,即得線性約束條件,列出目標(biāo)函數(shù),畫出可行域求解.
解答:解:(Ⅰ)由于隨機(jī)變量X服從正態(tài)分布N(800,502),故有μ=800,σ=50,P(700<X≤900)=0.9544.
由正態(tài)分布的對稱性,可得p=(P(X≤900)=P(X≤800)+P(800<X≤900)=
(Ⅱ)設(shè)A型、B型車輛的數(shù)量分別為x,y輛,則相應(yīng)的營運(yùn)成本為1600x+2400y.
依題意,x,y還需滿足:x+y≤21,y≤x+7,P(X≤36x+60y)≥p
由(Ⅰ)知,p=P(X≤900),故P(X≤360x+60y)≥p等價(jià)于36x+60y≥900.
于是問題等價(jià)于求滿足約束條件
且使目標(biāo)函數(shù)z=1600x+2400y達(dá)到最小值的x,y.
作可行域如圖所示,可行域的三個(gè)頂點(diǎn)坐標(biāo)分別為P(5,12),Q(7,14),R(15,6).
由圖可知,當(dāng)直線z=1600x+2400y經(jīng)過可行域的點(diǎn)P時(shí),直線z=1600x+2400y在y軸上截距最小,即z取得最小值.
故應(yīng)配備A型車5輛,B型車12輛.
點(diǎn)評:本題考查正態(tài)分布曲線的特點(diǎn)及曲線所表示的意義,考查簡單線性規(guī)劃.本題解題的關(guān)鍵是列出不等式組(方程組)尋求約束條件,并就題目所述找出目標(biāo)函數(shù),將可行域各角點(diǎn)的值一一代入,最后比較,即可得到目標(biāo)函數(shù)的最優(yōu)解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•湖北)假設(shè)每天從甲地去乙地的旅客人數(shù)X是服從正態(tài)分布N(800,502)的隨機(jī)變量.記一天中從甲地去乙地的旅客人數(shù)不超過900的概率為p0
(Ⅰ)求p0的值;
(參考數(shù)據(jù):若X~N(μ,σ2),有P(μ-σ<X≤μ+σ)=0.6826,P(μ-2σ<X≤μ+2σ)=0.9544,P(μ-3σ<X≤μ+3σ)=0.9974.)
(Ⅱ)某客運(yùn)公司用A,B兩種型號的車輛承擔(dān)甲、乙兩地間的長途客運(yùn)業(yè)務(wù),每車每天往返一次,A,B兩種車輛的載客量分別為36人和60人,從甲地去乙地的營運(yùn)成本分別為1600元/輛和2400元/輛.公司擬組建一個(gè)不超過21輛車的客運(yùn)車隊(duì),并要求B型車不多于A型車7輛.若每天要以不小于p0的概率運(yùn)完從甲地去乙地的旅客,且使公司從甲地去乙地的營運(yùn)成本最小,那么應(yīng)配備A型車、B型車各多少輛?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年普通高等學(xué)校招生全國統(tǒng)一考試湖北卷理數(shù) 題型:044

假設(shè)每天從甲地去乙地的旅客人數(shù)X是服從正態(tài)分布N(800,502)的隨機(jī)變量.記一天中從甲地去乙地的旅客人數(shù)不超過900的概率為p0

(Ⅰ)求p0的值;(參考數(shù)據(jù):若X~N(μ,σ2),有P(μ-σ<X<μ+σ)=0.6826,P(μ-2σ<X<2σ)=0.9544,P(μ-3σ<X<μ+3σ)=0.9974.)

(Ⅱ)某客運(yùn)公司用A、B兩種型號的車輛承擔(dān)甲、乙兩地間的長途客運(yùn)業(yè)務(wù),每車每天往返一次,A、B兩種車輛的載客量分別為36人和60人,從甲地去乙地的運(yùn)營成本分別為1600元/輛和2400元/輛.公司擬組建一個(gè)不超過21輛車的客運(yùn)車隊(duì),并要求B型車不多于A型車7輛.若每天要以不小于p0的概率運(yùn)完從甲地去乙地的旅客,且使公司從甲地去乙地的運(yùn)營成本最小,那么應(yīng)配備A型車、B型車各多少輛?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

假設(shè)每天從甲地去乙地的旅客人數(shù)是服從正態(tài)分布的隨機(jī)變量。記一天中從甲地去乙地的旅客人數(shù)不超過900的概率為

(I)求的值;(參考數(shù)據(jù):若,有,,。)

(II)某客運(yùn)公司用兩種型號的車輛承擔(dān)甲、乙兩地間的長途客運(yùn)業(yè)務(wù),每車每天往返一次,兩種車輛的載客量分別為36人和60人,從甲地去乙地的運(yùn)營成本分別為1600元/輛和2400元/輛。公司擬組建一個(gè)不超過21輛車的客運(yùn)車隊(duì),并要求型車不多于型車7輛。若每天要以不小于的概率運(yùn)完從甲地去乙地的旅客,且使公司從甲地去乙地的運(yùn)營成本最小,那么應(yīng)配備型車、型車各多少輛?

查看答案和解析>>

同步練習(xí)冊答案