2 + l g a (    )

(A) 3                (B) 4           C) 5            (D) 6

 

答案:B
提示:

= (2 + l g a )( l g al g100 )

= 4

 


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知點F(0,1),直線L:y=-2,及圓C:x2+(y-3)2=1.
(1)若動點M到點F的距離比它到直線L的距離小1,求動點M的軌跡E的方程;
(2)過點F的直線g交軌跡E于G(x1,y1)、H(x2,y2)兩點,求證:x1x2 為定值;
(3)過軌跡E上一點P作圓C的切線,切點為A、B,要使四邊形PACB的面積S最小,求點P的坐標(biāo)及S的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點分別為F1、F2,離心率e=
1
2
,P1為橢圓上一點,滿足
F1F2
P1F2
=0,
P1F1
P1F2
=
9
4
,斜率為k的直線l 過左焦點F1且與橢圓的兩個交點為P、Q,與y軸交點為G,點Q分有向線段
GF1
所成的比為λ.
(I) 求橢圓C的方程;
(II) 設(shè)線段PQ中點R在左準(zhǔn)線上的射影為H,當(dāng)1≤λ≤2時,求|RH|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A(3,0)及雙曲線E:-=1,若雙曲線E的右支上的點Q到點B(m,0)(m≥3)距離的最小值為|AB|.?

(1)求m的取值范圍,并指出當(dāng)m變化時點B的軌跡G.

(2)軌跡G上是否存在一點D,它在直線y=x上的射影為P,使得·=·?若存在,試指出雙曲線E的右焦點F分向量所成的比;若不存在,請說明理由.

                 

(3)當(dāng)m為定值時,過軌跡G上的點B(m,0)作一條直線l與雙曲線E的右支交于不同的兩點,且與直線y=x,y=-x分別交于M,N兩點,求△MON周長的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年湖南省益陽市沅江市高三質(zhì)量檢測試卷3(理科)(解析版) 題型:解答題

已知橢圓C:+=1(a>b>0)的左、右焦點分別為F1、F2,離心率e=,P1為橢圓上一點,滿足=0,=,斜率為k的直線l 過左焦點F1且與橢圓的兩個交點為P、Q,與y軸交點為G,點Q分有向線段所成的比為λ.
(I) 求橢圓C的方程;
(II) 設(shè)線段PQ中點R在左準(zhǔn)線上的射影為H,當(dāng)1≤λ≤2時,求|RH|的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案