精英家教網 > 高中數學 > 題目詳情

【題目】已知角α為三角形的一個內角,且滿足sinαtanα<0,則角α是第( )象限角.
A.一
B.二
C.三
D.四

【答案】B
【解析】解:∵角α為三角形的一個內角,
∴sinα>0,
則由sinαtanα<0,得tanα<0,
故α是第二象限角,
故選:B

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】下列命題中的真命題為 . ①復平面中滿足|z﹣2|﹣|z+2|=1的復數z的軌跡是雙曲線;
②當a在實數集R中變化時,復數z=a2+ai在復平面中的軌跡是一條拋物線;
③已知函數y=f(x),x∈R+和數列an=f(n),n∈N,則“數列an=f(n),n∈N遞增”是“函數y=f(x),x∈R+遞增”的必要非充分條件;
④在平面直角坐標系xoy中,將方程g(x,y)=0對應曲線按向量(1,2)平移,得到的新曲線的方程為g(x﹣1,y﹣2)=0;
⑤設平面直角坐標系xoy中方程F(x,y)=0表橢圓示一個,則總存在實常數p、q,使得方程F(px,qy)=0表示一個圓.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】對于函數y=f(x),若x0滿足f(x0)=x0 , 則稱x0為函數f(x)的一階不動點,若x0滿足f[f(x0)]=x0 , 則稱x0為函數f(x)的二階不動點,
(1)設f(x)=2x+3,求f(x)的二階不動點.
(2)若f(x)是定義在區(qū)間D上的增函數,且x0為函數f(x)的二階不動點,求證:x0也必是函數f(x)的一階不動點;
(3)設f(x)=ex+x+a,a∈R,若f(x)在[0,1]上存在二階不動點x0 , 求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=x+x3+x5 , x1 , x2 , x3∈R,x1+x2<0,x2+x3<0,x3+x1<0,則f(x1)+f(x2)+f(x3)的值(
A.一定小于0
B.一定大于0
C.等于0
D.正負都有可能

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知隨機變量ξ服從正態(tài)分布N(2,σ2),若P(0≤ξ≤2)=0.3,則P(ξ≥4)=(
A.0.2
B.0.3
C.0.6
D.0.8

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】有6名男醫(yī)生、5名女醫(yī)生,從中選出2名男醫(yī)生、1名女醫(yī)生組成一個醫(yī)療小組,則不同的選法共有種.(用數字作答).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】一位手機用戶前四次輸入四位數字手機密碼均不正確,第五次輸入密碼正確,手機解鎖.事后發(fā)現前四次輸入的密碼中,每次都有兩個數字正確,但它們各自的位置均不正確.已知前四次輸入密碼分別為3406,1630,7364,6173,則正確的密碼中一定含有數字(
A.4,6
B.3,6
C.3,7
D.1,7

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設x=0.20.3 , y=0.30.2 , z=0.30.3 , 則x,y,z的大小關系為( )
A.x<z<y
B.y<x<z
C.y<z<x
D.z<y<x

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知U={1,2,3,4},A={1,3,4},B={2,3,4},那么U(A∪B)=(
A.{1,2}
B.{1,2,3,4}
C.
D.{}

查看答案和解析>>

同步練習冊答案