【題目】閱讀:
已知、,,求的最小值.
解法如下:,
當(dāng)且僅當(dāng),即時(shí)取到等號(hào),
則的最小值為.
應(yīng)用上述解法,求解下列問題:
(1)已知,,求的最小值;
(2)已知,求函數(shù)的最小值;
(3)已知正數(shù)、、,,
求證:.
【答案】(1)9;(2)18;(3)證明見解析.
【解析】
試題分析:本題關(guān)鍵是閱讀給定的材料,弄懂弄清給定材料提供的方法(“1”的代換),并加以運(yùn)用.主要就是,展開后就可應(yīng)用基本不等式求得最值.(1);(2)雖然沒有已知的“1”,但觀察求值式子的分母,可以湊配出“1”:,因此有,展開后即可應(yīng)用基本不等式;(3)觀察求證式的分母,結(jié)合已知有
,因此有
此式中關(guān)鍵是湊配出基本不等式所需要的兩項(xiàng),如與合并相加利用基本不等式有 ,從而最終得出.
(1),
2分
而,
當(dāng)且僅當(dāng)時(shí)取到等號(hào),則,即的最小值為. 5分
(2), 7分
而,,
當(dāng)且僅當(dāng),即時(shí)取到等號(hào),則,
所以函數(shù)的最小值為. 10分
(3)
當(dāng)且僅當(dāng)時(shí)取到等號(hào),則. 16分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形為梯形, , 平面, , , , 為中點(diǎn).
(1)求證:平面平面;
(2)線段上是否存在一點(diǎn),使平面?若有,請(qǐng)找出具體位置,并進(jìn)行證明:若無,請(qǐng)分析說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)f(x)為增函數(shù),且f(f(x))=4x+9,g(x)=mx+m+3(m∈R).
(1)當(dāng)x∈[-1,2]時(shí),若不等式g(x)>0恒成立,求m的取值范圍;
(2)如果函數(shù)F(x)=f(x)g(x)為偶函數(shù),求m的值;
(3)當(dāng)函數(shù)f(x)和g(x)滿足f(g(x))=g(f(x))時(shí),求函數(shù)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了參加師大附中第30界田徑運(yùn)動(dòng)會(huì)的開幕式,高三年級(jí)某6個(gè)班聯(lián)合到集市購買了6根竹竿,作為班旗的旗桿之用,它們的長(zhǎng)度分別為3.8,4.3,3.6,4.5,4.0,4.1(單位:米).
(Ⅰ)若從中隨機(jī)抽取兩根竹竿,求長(zhǎng)度之差不超過0.5米的概率;
(Ⅱ)若長(zhǎng)度不小于4米的竹竿價(jià)格為每根10元,長(zhǎng)度小于4米的竹竿價(jià)格為每根元.從這6根竹竿中隨機(jī)抽取兩根,若期望這兩根竹竿的價(jià)格之和為18元,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的四棱錐中,四邊形為正方形,,平面,且、、分別為、、的中點(diǎn),.
⑴證明:平面;
⑵若,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知隨機(jī)變量的取值為不大于的非負(fù)整數(shù)值,它的分布列為:
0 | 1 | 2 | n | ||
其中()滿足: ,且.
定義由生成的函數(shù),令.
(I)若由生成的函數(shù),求的值;
(II)求證:隨機(jī)變量的數(shù)學(xué)期望, 的方差;
()
(Ⅲ)現(xiàn)投擲一枚骰子兩次,隨機(jī)變量表示兩次擲出的點(diǎn)數(shù)之和,此時(shí)由生成的函數(shù)記為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是偶函數(shù).
(1)求的值;
(2)設(shè),若函數(shù)與的圖象有且只有一個(gè)公共點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班從6名班干部中(其中男生4人,女生2人),任選3人參加學(xué)校的義務(wù)勞動(dòng).
(1)設(shè)所選3人中女生人數(shù)為ξ,求ξ的分布列;
(2)求男生甲或女生乙被選中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某科考試中,從甲、乙兩個(gè)班級(jí)各抽取10名同學(xué)的成績(jī)進(jìn)行統(tǒng)計(jì)分析,兩班成績(jī)的莖葉圖如圖所示,成績(jī)不小于90分為及格.
(Ⅰ)設(shè)甲、乙兩個(gè)班所抽取的10名同學(xué)成績(jī)方差分別為、,比較、的大小(直接寫出結(jié)果,不寫過程);
(Ⅱ)從甲班10人任取2人,設(shè)這2人中及格的人數(shù)為X,求X的分布列和期望;
(Ⅲ)從兩班這20名同學(xué)中各抽取一人,在已知有人及格的條件下,求抽到乙班同學(xué)不及格的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com