當(dāng)點(diǎn)(a,b)在直線2x+y-1=0上運(yùn)動(dòng)時(shí),4a+2b的最小值為
 
考點(diǎn):基本不等式
專題:不等式的解法及應(yīng)用
分析:由點(diǎn)在直線可得2a+b=1,由基本不等式可得4a+2b≥2
4a2b
,由指數(shù)的運(yùn)算代值可得.
解答: 解:∵點(diǎn)(a,b)在直線2x+y-1=0上運(yùn)動(dòng),
∴2a+b-1=0,即2a+b=1,
∴由基本不等式可得4a+2b≥2
4a2b

=2
22a2b
=2
22a+b
=2
2

當(dāng)且僅當(dāng)4a=2b,即a=
1
4
且b=
1
2
時(shí)取等號(hào),
故答案為:2
2
點(diǎn)評(píng):本題考查基本不等式,涉及直線的方程,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)容量為20的樣本數(shù)據(jù),分組后組距為10,區(qū)間與頻數(shù)分布如下:(10,20],2;(20,30],3;(30,40],4;(40,50],5;(50,60],4;(60,70],2,則樣本在[10,50]上的頻率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

我們把使得f(x)=0的實(shí)數(shù)x叫做函數(shù)y=f(x)的零點(diǎn),對(duì)于區(qū)間[a,b]上的連續(xù)函數(shù)y=f(x),若f(a)•f(b)<0,那么函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點(diǎn),則函數(shù)f(x)=lgx-
2
x
的零點(diǎn)所在的區(qū)間應(yīng)是(  )
A、(1,2)
B、(2,3)
C、(3,4)
D、(4,5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

方程sin2x+cosx+k=0有解,則k的范圍是( 。
A、-
5
4
≤k≤1
B、-
5
4
≤k≤0
C、0≤k≤
5
4
D、-1≤k≤
5
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

y=2cosx(
3
sinx+cosx)的一條對(duì)稱軸為( 。
A、x=
π
3
B、x=-
π
3
C、x=-
π
2
D、x=
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

當(dāng)a<0時(shí),關(guān)于x的不等式x2-4ax-5a2>0的解集是(  )
A、{x|x>5a或x<-a}
B、{x|x<5a或x>-a}
C、{x|-a<x<5a}
D、{x|5a<x<-a}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若tanθ=-
2
2
,求
2cos2
θ
2
-sinθ-1
2
sin(θ+
π
4
)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}的前n項(xiàng)和為Sn,若
OB
=a10
OA
+a11
OC
,且A、B、C三點(diǎn)共線(該直線不過(guò)點(diǎn)O),則S20=( 。
A、10B、11C、20D、21

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的中心在原點(diǎn),左、右焦點(diǎn)分別為F1、F2,若F1與拋物線y2=-4x的焦點(diǎn)重合,過(guò)F1的直線l與橢圓相交于A、B兩點(diǎn).與拋物線相交于C、D兩點(diǎn),當(dāng)l與x軸垂直時(shí),|CD|=2
2
|AB|.
(1)求橢圓的方程;
(2)若
F2A
F2B
=0,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案