已知圓和點(diǎn)
(1)過點(diǎn)M向圓O引切線,求切線的方程;
(2)求以點(diǎn)M為圓心,且被直線截得的弦長為8的圓M的方程;
(3)設(shè)P為(2)中圓M上任意一點(diǎn),過點(diǎn)P向圓O引切線,切點(diǎn)為Q,試探究:平面內(nèi)是否存在一定點(diǎn)R,使得為定值?若存在,請(qǐng)求出定點(diǎn)R的坐標(biāo),并指出相應(yīng)的定值;若不存在,請(qǐng)說明理由.
(1):
(2)
(3)存在定點(diǎn)R,此時(shí)為定值或定點(diǎn)R,此時(shí)為定值

(1)若過點(diǎn)M的直線斜率不存在,直線方程為:,為圓O的切線;     1分
當(dāng)切線l的斜率存在時(shí),設(shè)直線方程為:,即,
∴圓心O到切線的距離為:,解得:
∴直線方程為:.                        
綜上,切線的方程為:                               4分
(2)點(diǎn)到直線的距離為:
又∵圓被直線截得的弦長為8 ∴              7分
∴圓M的方程為:                                     8分
(3)假設(shè)存在定點(diǎn)R,使得為定值,設(shè),
∵點(diǎn)P在圓M上 ∴,則          10分
∵PQ為圓O的切線∴,


整理得:(*)
若使(*)對(duì)任意恒成立,則                     13分
,代入得:
整理得:,解得:  ∴
∴存在定點(diǎn)R,此時(shí)為定值或定點(diǎn)R,此時(shí)為定值.      16分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知直線,圓
(1)求直線被圓所截得的弦長;
(2)如果過點(diǎn)的直線與直線垂直,與圓心在直線上的圓相切,圓被直線分成兩段圓弧,且弧長之比為,求圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓C的方程為,過點(diǎn)M(2,4)作圓C的兩條切線,切點(diǎn)分別為A,B,
直線AB恰好經(jīng)過橢圓T:(a>b>0)的右頂點(diǎn)和上頂點(diǎn).
(1)求橢圓T的方程;
(2)已知直線l:y=kx+(k>0)與橢圓T相交于P,Q兩點(diǎn),O為坐標(biāo)原點(diǎn),
求△OPQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在直角坐標(biāo)系xoy中線段AB與y軸垂直,其長度為2,AB的中點(diǎn)C在直線x+2y-4=0上,則∠AOB的最大值為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知點(diǎn)P(a,0),若拋物線y2=4x上任一點(diǎn)Q都滿足|PQ|≥|a|,則a的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

直線l:y=x-1被圓(x-3)2+y2=4截得的弦長為     

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若直線ax+by=1過點(diǎn)M(cos α,sin α),則(  )
A.a(chǎn)2+b2≥1B.a(chǎn)2+b2≤1
C.≤1D.≥1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知直線l:2x+y+2=0及圓C:x2+y2=2y.
(1)求垂直于直線l且與圓C相切的直線l′的方程;
(2)過直線l上的動(dòng)點(diǎn)P作圓C的一條切線,設(shè)切點(diǎn)為T,求|PT|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

[2014·珠海聯(lián)考]已知兩點(diǎn)A(-2,0),B(0,2),點(diǎn)C是圓x2+y2-2x=0上任意一點(diǎn),則△ABC面積的最小值是________.

查看答案和解析>>

同步練習(xí)冊(cè)答案