用紅,黃,藍三種顏色涂標(biāo)有1,2,…,9的小正方形,如圖所示,要求相鄰的小正方形的顏色不同,標(biāo)有3,5,7的顏色相同,問有多少種涂法.
考點:排列、組合的實際應(yīng)用
專題:應(yīng)用題,排列組合
分析:先考慮圖形中的3,5,7,再考慮2、4,從而可確定左上角1的涂法,同理可得右下角9的涂法,利用乘法原理,可得結(jié)論.
解答: 解:這個問題可分為三步,第一步涂3,5,7,有3種可能,當(dāng)3,5,7為其中一種顏色時,
第二步涂1、4、2,先考慮2、4就只有兩種可能,再考慮1.
如果2、4顏色相同的兩種情況下,為另外兩種顏色,每取一種顏色,1各有2種,
故1、4、2的涂法就有2×2=4種可能.
若2、4顏色不同,則只有一種可能,加之2、4排列不同,2種.于是左上角1有1種涂法,此時1、4、2的涂法就有2種.
第三步涂8、9、6,同理可得有六種涂法,
根據(jù)乘法原理,可得所有涂法共有3×6×6=108種,
點評:本題考查考查乘法原理,考查分類討論的數(shù)學(xué)思想,正確分步是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,PCBM是直角梯形,∠PCB=90°,PM∥BC,PM=PC=AC=1,BC=2,又∠ACB=120°,AB⊥PC.
(1)求證:平面PAC⊥平面ABC;
(2)求二面角M-AC-B的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在長方體ABCD-A1B1C1D1中,AD=AA1=1,AB=2,點E在棱AB上移動.
(1)求異面直線D1E與A1D所成角.
(2)AE等于何值時,二面角D1-EC-D的大小為
π
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知四棱錐P-ABCD中,底面ABCD為菱形,PA⊥平面ABCD,∠ABC=60°,E、F分別是BC,PC的中點.
(1)證明:AE⊥平面PAD;
(2)若H為PD上的動點,EH與平面PAD所成最大角的正切值為
3
,求二面角E-AF-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD為菱形,∠BAD=60°,Q為AD的中點.
(1)若PA=PD,求證:平面PQB⊥平面PAD;
(2)點M在線段PC上,PM=
1
3
PC
,若平面PAD⊥平面ABCD,且PA=PD=AD=2,求二面角M-BQ-C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,五棱錐P-ABCDE中,PA⊥底面ABCDE,AB∥CD,AC∥ED,AE∥CB,∠ABC=45°,AB=PA=2
2
,BC=2AE=4.
(1)求點B到平面PCD的距離;
(2)求二面角P-BC-A的正弦值;
(3)在棱PA上是否存在一點M,使得DM∥面PBC,若存在,求出DM的長,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1,F(xiàn)2是雙曲線C:
x2
16
-
y2
b2
=1(b>0)
的兩個焦點,P是雙曲線C上一點,若∠F1PF2=90°且△PF1F2的面積為9,則C的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)的左焦點F(-c,0)(c>0),作傾斜角為
π
6
的直線FE交該雙曲線右支于點P,若
OE
=
1
2
(
OF
+
OP
)
,且
OE
EF
=0
,則雙曲線的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)Sn為等差數(shù)列{an}的前n項和,已知S5=5,S9=27,則S7=
 

查看答案和解析>>

同步練習(xí)冊答案