以下四個(gè)命題中,正確命題的序號(hào)是________.
①△ABC中,A>B的充要條件是sinA>sinB;
②函數(shù)y=f(x)在區(qū)間(1,2)上存在零點(diǎn)的充要條件是f(1)•f(2)<0;
③等比數(shù)列{an}中,a1=1,a5=16,則a3=±4;
④把函數(shù)y=sin(2-2x)的圖象向右平移2個(gè)單位后,得到的圖象對(duì)應(yīng)的解析式為y=sin(4-2x).

解:①△ABC中,A>B?sinA>sinB?A>B,
∴△ABC中,A>B的充要條件是sinA>sinB,故①正確;
②函數(shù)y=f(x)在區(qū)間(1,2)上存在零點(diǎn)不能推出f(1)•f(2)<0,
f(1)•f(2)<0?函數(shù)y=f(x)在區(qū)間(1,2)上存在零點(diǎn),
故②不正確;
③等比數(shù)列{an}中,a1=1,a5=16,則a3=1×q2=4,故③不正確;
④把函數(shù)y=sin(2-2x)的圖象向右平移2個(gè)單位后,
得到的圖象對(duì)應(yīng)的解析式為y=sin[2-2(x-2)]=sin(6-2x),故④不正確.
故答案為:①.
分析:①△ABC中,A>B?sinA>sinB;②②函數(shù)y=f(x)在區(qū)間(1,2)上存在零點(diǎn)的必要不充分條件是f(1)•f(2)<0;③等比數(shù)列{an}中,a1=1,a5=16,則a3=4;④把函數(shù)y=sin(2-2x)的圖象向右平移2個(gè)單位后,得到的圖象對(duì)應(yīng)的解析式為y=sin(6-2x).
點(diǎn)評(píng):本題考查命題的真假判斷,是基礎(chǔ)題.解題時(shí)要認(rèn)真審題,注意三角函數(shù)、零點(diǎn)、等比數(shù)列等知識(shí)點(diǎn)的靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

1、以下四個(gè)命題中,正確命題的個(gè)數(shù)是(  )
①不共面的四點(diǎn)中,其中任意三點(diǎn)不共線;
②若點(diǎn)A、B、C、D共面,點(diǎn)A、B、C、E共面,則A、B、C、D、E共面;
③若直線a、b共面,直線a、c共面,則直線b、c共面;
④依次首尾相接的四條線段必共面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

1、以下四個(gè)命題中,正確命題的個(gè)數(shù)是
1

①不共面的四點(diǎn)中,其中任意三點(diǎn)不共線;
②若點(diǎn)A、B、C、D共面,點(diǎn)A、B、C、E共面,則A、B、C、D、E共面;
③若直線a、b共面,直線a、c共面,則直線b、c共面;
④依次首尾相接的四條線段必共面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以下四個(gè)命題中,正確命題的序號(hào)是

①△ABC中,A>B的充要條件是sinA>sinB;
②函數(shù)y=f(x)在區(qū)間(1,2)上存在零點(diǎn)的充要條件是f(1)•f(2)<0;
③等比數(shù)列{an}中,a1=1,a5=16,則a3=±4;
④把函數(shù)y=sin(2-2x)的圖象向右平移2個(gè)單位后,得到的圖象對(duì)應(yīng)的解析式為y=sin(4-2x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:《第1章 空間幾何體》2010年單元測(cè)試卷(2)(解析版) 題型:填空題

以下四個(gè)命題中,正確命題的個(gè)數(shù)是    
①不共面的四點(diǎn)中,其中任意三點(diǎn)不共線;
②若點(diǎn)A、B、C、D共面,點(diǎn)A、B、C、E共面,則A、B、C、D、E共面;
③若直線a、b共面,直線a、c共面,則直線b、c共面;
④依次首尾相接的四條線段必共面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012屆湖北省高二下學(xué)期期中考試?yán)砜茢?shù)學(xué)卷 題型:選擇題

以下四個(gè)命題中,正確的是 (    )

A. 若,則三點(diǎn)共線

B. 若{ a , b , c }為空間的一個(gè)基底,則{ a+b , b+c ,c+a }構(gòu)成空間的另一個(gè)基底

C. |(a·b)c|=|a|·|b|·|c|

D. 為直角三角形的充要條件是

 

查看答案和解析>>

同步練習(xí)冊(cè)答案