精英家教網 > 高中數學 > 題目詳情

【題目】已知圓C:x2+y2﹣4x﹣6y+12=0,點A(3,5).
(1)求過點A的圓的切線方程;
(2)O點是坐標原點,連接OA,OC,求△AOC的面積S.

【答案】
(1)解:因為圓C:x2+y2﹣4x﹣6y+12=0(x﹣2)2+(y﹣3)2=1.

所以圓心為(2,3),半徑為1.

當切線的斜率存在時,

設切線的斜率為k,則切線方程為kx﹣y﹣3k+5=0,

所以 =1,

所以k= ,所以切線方程為:3x﹣4y+11=0;

而點(3,5)在圓外,所以過點(3,5)做圓的切線應有兩條,

當切線的斜率不存在時,

另一條切線方程為:x=3


(2)解:|AO|= =

經過A點的直線l的方程為:5x﹣3y=0,

故d=

故S= d|AO|=


【解析】(1)先把圓轉化為標準方程求出圓心和半徑,再設切線的斜率為k,寫出切線方程,利用圓心到直線的距離等于半徑,解出k,然后可得切線方程.(2)先求OA的長度,再求直線AO 的方程,再求C到OA的距離,然后求出三角形AOC的面積.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】隨機抽取高一年級n名學生,測得他們的身高分別是a1 , a2 , …,an , 則如圖所示的程序框圖輸出的s=

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列函數中既是偶函數又在(﹣∞,0)上是增函數的是(
A.y=x
B.y=
C.y=x2
D.y=x

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知f(x)是定義在R上的奇函數,且在(0,+∞)是增函數,又f(﹣3)=0,則不等式xf(x)≥0的解集是(
A.{x|﹣3≤x≤3}
B.{x|﹣3≤x<0或0<x≤3}
C.{x|x≤﹣3或x≥3}
D.{x|x≤﹣3或x=0或x≥3}

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知集合A={x|2≤x≤6},B={x|2a≤x≤a+3}
(1)當a=2時,求A∪B
(2)當BA時,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知f(x)=9x﹣2×3x+4,x∈[﹣1,2].
(1)設t=3x , x∈[﹣1,2],求t的最大值與最小值;
(2)求f(x)的最大值與最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】△ABC中,角A,B,C所對的邊分別為a,b,c,S表示三角形的面積,若asinA+bsinB=csinC,且S= ,則對△ABC的形狀的精確描述是(
A.直角三角形
B.等腰三角形
C.等腰或直角三角形
D.等腰直角三角形

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程

在直角坐標系中,將曲線為參數)上每一點的橫坐標保持不變,縱坐標變?yōu)樵瓉淼?倍,得到曲線;以坐標原點為極點,以軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

(1)求曲線的極坐標方程;

(2)已知點,直線的極坐標方程為,它與曲線的交點為, ,與曲線的交點為,求的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程.

在平面直角坐標系中,傾斜角為的直線的參數方程為為參數).以坐標原點為極點,以軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程是.

(1)寫出直線的普通方程和曲線的直角坐標方程;

(2)已知點.若點的極坐標為,直線經過點且與曲線相交于兩點,設線段的中點為,求的值.

查看答案和解析>>

同步練習冊答案